• 439.50 KB
  • 2022-04-29 14:33:33 发布

最新《6.3 实践与探索》课件PPT.ppt

  • 35页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'6.3实践与探索第1课时体积和面积问题 新课导入问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的2/3,求这个长方形的长和宽;(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1)、(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗? 解:(1)设长方形的长为x厘米,则宽为2/3x厘米.根据题意,得2(x+2/3x)=60解这个方程,得x=18所以长方形的长为18厘米,宽为12厘米. (2)设长方形的长为x厘米,则宽为(x-4)厘米,根据题意,得2(x+x-4)=60解这个方程,得x=17所以,S=13×17=221(平方厘米). (3)在(1)的情况下S=12×18=216(平方厘米);在(2)的情况下S=13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x平方厘米?如不能,怎么办?如果直接设长方形的面积为x平方厘米,则如何才能找出相等关系列出方程呢? 如果我们要算出长方形的面积,就要知道长方形的长和宽.如果我们知道长是多少,根据宽比长少4厘米求出宽,然后就能求出面积.所以现在应该去求出长方形的长或者宽.如果设长方形的长或宽为未知数,其实问题就跟原来的第一小题一样. 探索:将题(2)中的宽比长少4厘米改为3厘米、2厘米、1厘米、0厘米(即长宽相等),长方形的面积有什么变化?【归纳结论】在周长一定的情况下,长方形的面积在长和宽相等的情况下最大;如果可以围成任何图形,则圆的面积最大. 练习:课本14页第1、2题1.一块长、宽、高分别为4厘米、3厘米、2厘米的长方体橡皮泥,要用它来捏一个底面半径为1.5厘米的圆柱,它的高是多少?(精确到0.1厘米,取3.14)432·r=1.5解:设圆柱的高是厘米,则根据题意,得答:圆柱的高是3.4厘米. 2.在一个底面直径5厘米、高18厘米的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口距离.185610所以玻璃杯不能完全装下.解:圆柱形瓶内装水:(厘米3)(厘米3)圆柱形玻璃杯可装水:设:瓶内水面还有厘米高,则答:玻璃杯不能完全装下,瓶内水面还有3.6厘米高.·· 6.3实践与探索第2课时储蓄和利润问题 新课导入1.你们了解教育储蓄吗?了解储蓄存款征收利息税的情况吗?2.了解与银行存款有关的用语:什么是本金?什么是利息?什么是期数?什么是本息和?什么叫利率?什么叫利息率?3.小明爸爸前年存了年利率为3.35%的二年期定期储蓄.今年到期后,所得利息正好为小明买了一只价值48.60元的计算器.问小明爸爸前年存了多少元?你能否列出较简单的方程? 问题1:爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为4.00%).3年后能取5600元,他开始存入了多少元?分析:5600元是什么量?要求的是什么量?相等的关系是什么?等量关系:本息和=本金+利息=本金+本金×年利率×期数推进新课 解:设他开始存入x元,根据题意,可列方程x(1+4.00%×3)=5600解得x=5000所以他开始存入5000元. 你还知道储蓄问题中有哪些计算公式?【归纳结论】利息的计算方法利息=本金×利率×期数本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) 问题3:商场出售某种文具,每件可盈利2元,为了支援山区,现在按原售价的7折出售给一个山区学校,结果每件仍盈利0.2元.问该文具每件的进价是多少元?分析:基本关系式:进价=标价×折数-利润解:设该文具每件的进价是x元.根据题意得:x=7/10(x+2)-0.2解方程得:x=4答:该文具每件的进价是4元. 【归纳结论】利润问题中的等量关系式:商品利润=商品售价-商品进价商品售价=商品标价×折扣数商品利润/商品进价×100%=商品利润率商品售价=商品进价×(1+利润率) 1.某商店有一套运动服,按标价的8折出售仍可获利20元,已知这套运动服的成本价为100元,问这套运动服的标价是多少元?巩固提升分析:设这套运动服的标价是x元.此题中的等量关系:按标价的8折出售仍可获利20元,即标价的8折-成本价=20元.解:设这套运动服的标价是x元.根据题意得:0.8x-100=20,解得:x=150.答:这套运动服的标价为150元. 2.为了准备小敏6年后上大学的学费5000元,她的父母现在就参加了教育储蓄.下面有两种储蓄方式:(1)直接存一个6年期;(2)先存一个3年期的,3年后将本息和自动转存一个3年期.你认为哪种储蓄方式开始存入的本金比较少? 分析:5000=本金+本金×年利率×期数=本金×(1+年利率×期数)解:(1)设开始存入x元.那么列出方程:(1+4.75%×6)x=5000解得x≈3891所以开始存入大约3891元,六年后本息和为5000元. (2)(1+4.00%×3)y×(1+4.00%×3)=5000解得:y≈3986所以开始存入大约3986元,6年后本息和就能达到5000元.因此,按第1种储蓄方式开始存入的本金少. 6.3实践与探索第3课时行程和工程问题 新课导入1.行程问题中路程、速度、时间三者间有什么关系?相遇问题中含有怎样的相等关系?追及问题中含有怎样的相等关系呢?2.工作量、工作效率、工作时间之间有怎样的关系? 问题1:小张和父亲计划搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站.随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?推进新课 吴小红同学给出了一种解法:设小张家到火车站的路程是x千米,由实际时间比原计划乘公共汽车提前了45分钟,可列出方程:解这个方程:x/40-x/120-x/120=3/43x-x-x=90x=90经检验,它符合题意.答:小张到火车站的路程是90千米. 张勇同学又提出另一种解法:设实际上乘公共汽车行驶了x千米,则从小张家到火车站的路程是3x千米,乘出租车行使了2x千米.注意到提前的3/4小时是由于乘出租车而少用的,可列出方程:2x/40-2x/80=3/4解这个方程得:x=30.3x=90.所得的答案与解法一相同. 【归纳结论】1.行程问题中基本数量关系是:路程=速度×时间;变形可得到:速度=路程÷时间,时间=路程÷速度.2.常见题型是相遇问题、追及问题,不管哪个题型都有以下的相等关系:相遇:相遇时间×速度和=路程和;追及:追及时间×速度差=被追及距离. 问题2:课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”,就停住了.现由徒弟先做1天,再两人合作,完成后共得到报酬450元.如果按各人完成的工作量计算报酬,那么该如何分配? 分析:我们可以将工作总量看作“单位1”,根据“工作效率=工作总量/工作时间”可以知道,师傅的工作效率是1/4,徒弟的工作效率是1/6,整项工程分了两个部分:第一部分是徒弟先做的一天,第二部分是师徒两人合作完成的,而合作的时间我们不知道,所以应设合作的时间为x,根据工作总量可列出方程.从而求出他们各自工作的量,这样就可以求出他们得到的报酬. 解:设两人合作的时间是x天,根据题意可列出方程:1/6+(1/6+1/4)x=1解得:x=2经检验,它符合题意.所以,徒弟工作时间为3天,完成工作总量的1/6×3=1/2;师傅工作时间为2天,完成工作总量的1/4×2=1/2.因为他们完成的工作量一样,所以报酬也应该一样多,都是270元. 【归纳结论】工程问题中的三个量,根据工作量=工作效率×工作时间,已知其中两个量,就可以表示第三个量.两人合作的工作效率=每个人的工作效率的和. 巩固提升1.一条环形跑道长400米,甲、乙两人练习跑步,甲每秒钟跑6米,乙每秒钟跑4米.(1)两人同时、同地、背向出发,经过多少时间,两人首次相遇?(2)两人同时、同地、同向出发,经过多少时间,两人首次相遇? 分析:(1)同时、同地、背向,甲、乙二人第一次相遇时,甲和乙共跑了一圈(即400米),等价于相遇问题,相等关系:甲走的路程+乙走的路程=400米.(2)同时、同地、同向,甲、乙二人第一次相遇时,甲比乙多跑了一圈(即400米),等价于追及问题,等量关系:甲走的路程-乙走的路程=400米. 解:(1)设两人同时、同地、背向出发,经过x秒后两人首次相遇,根据题意,得6x+4x=400,解方程,得x=40.答:两人同时、同地、背向出发,经过40秒后两人首次相遇.(2)设两人同时、同地、同向出发,经过x秒后两人首次相遇,根据题意,得6x-4x=400,解方程,得x=200.答:两人同时、同地、背向出发,经过200秒后两人首次相遇. 2.甲、乙两队合挖一条水渠,5天可以完成.如果甲队独挖8天可以完成,那么乙队独挖几天可以完成?分析:这一工程问题求的是工作时间.只要先求出乙的工作效率.根据:工作量=工作效率×工作时间,就能列出求乙的工作时间的方程. 解:设乙队单独挖需x天完成,由于两队合做每天完成的工作量等于各队每天完成的工作量的和,也就是说两队合做的工作效率等于各队单独的工作效率的和,所以乙队的工作效率为:1/5-1/8.根据题意,得(1/5-1/8)x=1解这个方程,得3/40x=1,x=40/3.答:乙队独挖40/3天可以完成.'