• 5.99 MB
  • 2022-04-29 14:20:15 发布

【5A版】国家自然科学基金重点项目答辩PPT.ppt

  • 47页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'2006年度国家基金重点项目申请答辩(包头,7月30日)申请项目名称:高分子电解质材料在工程申请人:郑强依托单位:浙江大学合作单位:南京大学中科院长春应化所应用中的基础问题研究 一、项目背景及课题的提出二、项目主要研究内容三、项目的研究方案四、项目实施的可行性五、项目的特色与总体目标 一、项目背景及课题的提出 2006年度国家基金委工程与材料科学部有机高分子材料学科所列重点项目指南通用和特种高分子材料高性能化中的的基础科学问题与生命科学相关的高分子材料的基础研究有机高分子功能材料:具有光、电、磁、吸附与分离功能材料的可控制备和应用的基础研究与能源、环境、资源利用相关的高分子材料的基础研究 环境保护是目前世界尤其是我国面临的重大问题项目背景能源、资源已成为当今世界尤其是我国可持续发展的重大问题 研究背景国民经济和社会发展的重大需求能源高效开采(原油)驱油剂资源环境絮凝剂高分子电解质(聚电解质)材料污染治理(污水) 聚电解质材料的溶液特性与流变行为,是其在工程应用中最主要的基础科学问题对固态材料而言,凝聚态结构是决定其品质和最终使用性能的关键对液态材料而言,溶液结构和流变行为是决定其品质和最终使用性能的关键 一次(自能量衰减)采油二次(注水)采油三次(驱)采油意味着三次采油主要采用聚合物驱油剂来实现,聚电解质是最理想的聚合物驱油剂原油采收率(%)重大需求背景1三次采油5-1030-4050-70我国油田平均采收率仅34.2%我国有近100亿吨探明石油地质储量无法开采 三次采油的关键聚电解质驱油剂的突破开展新型高效聚电解质驱油剂的研究,探明并调控其溶液性质以及在使用过程中的特殊流变行为,具有重要意义聚电解质驱油剂分子结构形态调控驱油剂剪切降解与环境降解聚电解质效应与驱油机制的关系 重大需求背景2我国的水资源环境日益恶化污染状况调查表明,中国532条主要河流中,82%受到不同程度的污染;在中国人口密集的地区,湖泊、水库已经全部受到了污染。我国制污投入进一步加大2005年全国废水治理投资133.7亿元,比上年分别增加26.6%。我国污水排放量不断增大2004年全国废水排放总量482.4亿吨,比上年增加4.9%。2005年全国废水排放总量524.5亿吨,比上年增加8.7%。污水治理我国每年废水处理用絮凝剂约150~200万吨,最主要的是高分子絮凝剂.其中,絮凝效率最高的是聚电解质 污水处理的关键聚电解质絮凝剂的突破聚电解质絮凝剂分子结构形态调控聚电解质絮凝剂的缔合凝聚(凝胶化)聚电解质絮凝剂的电离、迁移与絮凝效率开展新型高效聚电解质絮凝剂的研究,探明并调控其溶液性质以及在使用过程中的凝聚行为,具有重要意义 聚电解质基础研究现状1对聚电解质不能完全离解现象至今仍停留在不完整的定性说明阶段对“聚电解质效应”本质的解释存在严重误导溶液性质聚电解质的溶液特性的研究亟待深入对驱油作用(增粘)与聚电解质溶液性质的关系还有待阐明对絮凝作用与聚电解质溶液性质(电导、迁移)的关系尚不清楚 聚电解质基础研究现状2Thuressonetal.指出,添加少量表面活性剂使聚电解质溶液体系的动态粘度有数量级的提高,但原因不明Tsitsilianiset.al考察了Ps-PANa-Ps三嵌段聚电解质溶液的静态和动态流变学,对一些现象还不能解释Tadroset.al发现,电解质溶液可明显改变煤/水体系流变特性,进而改变输送特性和稳定性,但尚不系统Cosgroveetal.发现,少量聚电解质NaPAMPS的加入使胶原粘度大幅增高并产生明显的触变行为,但机理不明Macromolecules2000,33,1199Langmuir1996,12,530Langmuir1995,11Macromolecules2002,35,3662流变特性聚电解质的流变特性亟需开展 申请项目的科学问题聚电解质材料絮凝剂驱油剂驱油效率独特的溶液性质粒子填充、相分离、悬浮、剪切形变……复杂的流变行为聚电解质效应、电离、电导、迁移……加注和输送絮凝效应凝聚行为 二、项目主要研究内容 聚电解质溶液电离与电导行为聚电解质的溶液结构、流变特性与驱油/絮凝功效聚电解质溶液的特征流变行为主要研究内容 拟解决的关键科学问题聚电解质溶液剪切流变行为的模型“聚电解质效应”的本质聚电解质结构与特殊溶液性质、流变行为的关系以及在复杂外场下驱油剂与絮凝剂的功效 三、项目的研究方案 验证“动态接触浓度”划分聚电解质溶液浓度区间的普适性、正确性(粘度法、激基荧光光谱、激光光散射)(一)聚电解质溶液部分考察不同浓度划分区域不同类型聚电解质溶液的离解行为(pH电极法、电导法)探索聚电解质溶液粘度-浓度特异关系(Langmiur等温式,2~3种自制的不同材质毛细管粘度计) (二)聚电解质流变部分均一聚电解质溶液的稳态、动态剪切流变特性(AR-G2流变仪,稳态旋转粘度计和圆筒式动态流变测定)聚电解质/添加物混合体系的复杂流变行为(AR-G2流变仪,稳态旋转粘度计和圆筒式动态流变测定、流变-光散射溶液性质表征)复杂条件下聚电解质溶液剪切流动与凝胶化的测定与模拟(自建的流变参数测定装置) (三)驱油/絮凝功效部分模拟絮凝/驱油条件下模型聚电解质的增粘机制及其与驱油/絮凝效果间构效关系(稳态粘度与动态粘度法)疏水改性聚电解质不同环境下的疏水缔合凝聚、增粘模型(DLS、SLS、GPC-LS-η联用、粘度法)模拟驱油/絮凝条件下模型聚电解质的增粘机制及其与驱油/絮凝效果间构效关系(链段长度、序列结构,电荷种类和强度,pH值,浓度和温度及时间等因素的影响)嵌段型聚电解质在溶液中的构象及形态(动态光散射跟踪组装和形态变化过程)嵌段型聚电解质 四、项目实施的可行性 可行性分析已有工作基础聚电解质溶液研究基础复杂流体流变学研究基础 溶液研究基础:(1)高分子溶液浓度区间的初步划分Km>0分子间范德华力非聚电解质溶液+部分聚电解质溶液Km=0库伦力聚电解质溶液Km:有效自缔合常数团簇理论:sp/C=[]+6Km[]CHuggins公式:sp/C=[]+kH[]2CKm=kH[h]/6KH:Huggins斜率常数极稀溶液稀溶液亚浓溶液浓溶液动态接触浓度交叠浓度静态接触浓度临界缠结浓度0C*CsC+CC**动态接触浓度概念的提出,为正确理解聚电解质的溶液特性开辟了新的途径ChengRS.,Macromol.Symp.,1997,124,27.PanY.,ChengRS,Chin.J.Polym.Sci.,2000,18,57. 溶液研究基础:(2)高分子溶液粘度的界面效应溶质的吸附滑流K:有效吸附层厚度Fint:界面校正因子,与浓度有关高分子稀溶液粘度的普适公式为从理论上分析并验证聚电解质效应的本质提供了可能 溶液研究基础:(3)聚电解质溶液奇异的粘度-浓度依赖关系极稀溶液的粘度随浓度减小而急剧增大的反常现象ChengRSetal.(tobeSubmitted)由聚电解质的开拓者、美国科学家Fuoss教授提出实验点“聚电解质效应”(J.Polym.Sci.,Polym.Phys.Ed.3,603,1948)聚电解质以棒状存在理论模拟值聚电解质效应本质界面吸附效应由中国学者程镕时提出 溶液研究基础:(4)聚电解质溶液奇异的浓度-温度依赖关系聚电解质极稀溶液粘度随温度降低出现的异常现象YLi,RSCheng,J.Polym.Sci.Polym.Phys.2006,44,1804. 聚电解质溶液粘度界面效应的直接证明Km=0HPAMM=5.0x105Degreeofhydrolysis19%溶液研究基础:(5)高分子溶液粘度的界面(材质)效应蔡佳利薄淑琴秦汶严小虎程镕时,应用化学18(05),377(2001)庆贺黄葆同院士80寿辰专刊Cai,JL,Bo,SQ,Cheng,RS,ColloidPolym.Sci.2003,282,182,发现聚电解质的界面吸附效应与材质和环境密切相关 聚电解质溶液的离解度a的浓度依赖性依从高分子溶液应划分成四个浓度区间的原则(6)聚电解质溶液的离解与浓度区间的划分溶液研究基础:极稀溶液亚浓溶液KaK0发现聚电解质的离解度与浓度区间密切相关提出了聚电解质的存在两个电离常数ChengRS,etal.(tobesubmitted) 发现了溶液中高分子的链形态参数(C*)、污水中悬浮物浓度(Css)与絮凝剂最佳浓度(Cod)的相关性(7)高分子絮凝剂的稀溶液性质及其絮凝规律溶液研究基础:QianJW,XiangXJ,etal.Euro.Polym.J.2004,40,1699YangWY,QianJW,ShenZQ,J.Coll.Interf.Sci,2004,273,400 (8)嵌段型聚电解质的形态调控PEG-b-PLLA-b-PLGA溶液研究基础:温度和时间、溶剂的极性、pH等都对聚电解质形态有很大的影响,表明多种因素同时影响高分子链的形态和本体形态JiXL,etal.(tobesubmitted). 4.悬浮3.相分离2.剪切形变1.粒子填充聚电解质(驱油剂和絮凝剂)流变学的基本科学问题复杂流体5.凝胶化 (1)粒子填充----流变行为PDMS/SiO2流变研究基础:揭示了纳米SiO2表面性质对储能模量应变依赖行为的影响,发现了强化的Payne效应HuHG,ZhengQ,J.Mater.Sci.,2005,40,249HuHG,LinJ,ZhengQ,XuXM,J.Appl.Polym.Sci.,2006,99,3477DongQQ,ZhengQ,DuMandSongYH,J.Soc.Rheo.Japan,2004,32,271DongQQ,DuM,ZhengQ.J.Mat.Sci.,2006,41,3175 ZhangXW,PanY,ZhengQ,YiX,J.Polym.Sci.Polym.Phys.,2000,38,2739——Cole–ColediagramsforPSfilledwith25vol%Sn–Pballoy流变研究基础:(2)剪切形变----流变行为粒子形变与基体的松弛行为显著影响体系流变行为ZhengQ,ZhangXW,PanY,YiXS.J.Appl.Polym.Sci.,2002,86,3166liquiddropletsSolidparticlesZhangXW,ZhengQ,PanY,YiXS.J.Appl.Polym.Sci.,2002,86,3173 ——RelationshipbetweenTandTemperature(3)相分离----流变行为流变研究基础:发现用弛豫时间与温度关联的类WLF方程,可以描述真实的Spinodal温度(低于表观Tg)ZhengQ,PengM.,SongYH.,ZhaoTJ.,Macromolecules,2001,34,8483DuM,GongJH,ZhengQ,Polymer2004,45,673ZuoM,PengM,ZhengQ,Polymer2005,46,11085ZuoM,PengM,ZhengQ,J.Polym.Sci.Polym.Phys.2006,44,1547 K值两次突变0.01585rad/s修正Kerner-Nielsen方程以反映复合体系中的团聚结构流变研究基础:(4)悬浮体系----流变行为WuG,ZhengQ.J.Polym.Sci.Polym.Phys.2004,42,1199K1、K2分别接近于1、2WuG,LinJ,ZhengQ,ZhangMQ,Polymer,2006,47,2442 tc≤t≤t1发展了一种用于表征体系物理凝胶点的新方法−静态测试法,并提出了相应的数学模型T=138oC流变研究基础:(5)凝胶化----流变行为ChenQ,FanYR,ZhengQ,Rheo.Acta.2006,(Inpress)ChenQ,FanYR,ZhengQ.ChineseJ.Polym.Sci.,2005,23,423 研究团队可行性分析溶液/流变强强联合特色互补 工学博士浙江大学教授国家杰出青年科学基金获得者(2001)教育部“长江学者奖励计划”特聘教授(2004)南京大学教授华南理工大学教授中国科学院院士程镕时郑强项目申请人 1977年生工学博士浙江大学讲师年轻团队1967年生理学博士长春应化所研究员1974年生理学博士南京大学副教授1974年生理学博士南京大学副教授1976年生理学博士浙江大学助理研究员姬相玲谢鸿峰安全福杨琥上官勇刚 可行性分析雄厚的研究平台浙江大学聚合反应工程国家重点实验室高分子合成与功能构造教育部重点实验室中科院长春应化所高分子物理与化学国家重点实验室国家电化学光谱与测试中心南京大学介观化学教育部重点实验室配位化学国家重点实验室 高级流变仪(ARG-2)(美国)动态力学分析仪(Q800)(美国)调制式示差扫描量热仪(MDSCQ100)(美国)先进流变学扩展系统(ARES-9A)(美国)Haakke流变仪(RHEOFLIXERPOLYLAB)(德国)毛细管流变仪(RHEOFLXERHT)(德国)转矩流变仪(XSS-30)(中国)付里叶红外光谱仪(BRUKERVECTOR22)(德国)原子力显微镜(SEIKOSPI3800N)(日本)扫描电镜(JSM-5510LV)(日本)激光共聚焦显微镜(BIO-RADR-2100)(英国)主要仪器设备AR-G2流变仪 喷雾干燥机(BUCHIB-191)(德国)先进流变学扩展系统(ARES-9A)(美国)四检测器(示差、紫外、粘度、激光光散射)凝胶渗透GPC静态和动态光散射仪,聚合物制备设施和分级设备主要仪器设备热重分析仪(PETGA-6)(美国)凝胶渗透色谱仪(HERMOSPC)(日本)高温凝胶渗透色谱仪(PL-220)(英国)热台显微镜(OLYMPUSBX-51)(美国)电导仪ARES流变仪 五、项目的特色与总体目标 本项目的特色是一项面向石油高效开采、污水治理重大需求的重点申请课题是一项以高分子材料液体形态结构为对象的重点申请课题是一项体现高分子溶液与流变学研究特色交叉的重点申请课题 项目的总体目标提出聚电解质电离与电导基本物理行为的新理论建立聚电解质材料特征流变行为的新模型揭示聚电解质材料在驱油和絮凝应用中的作用规律及机制培养一支高分子溶液和流变学领域的年轻研究团队 感谢国家基金委和各位评审专家!'