- 46.50 KB
- 2023-01-02 07:32:59 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
-------------------------------------------------------精选财经经济类资料----------------------------------------------小学数学手抄报-小学数学手抄报版面设计图大全-----------------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~
-------------------------------------------------------精选财经经济类资料----------------------------------------------小学数学手抄报-小学数学手抄报版面设计图大全-----------------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~
-------------------------------------------------------精选财经经济类资料----------------------------------------------小学数学手抄报-小学数学手抄报版面设计图大全-----------------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~
-------------------------------------------------------精选财经经济类资料----------------------------------------------小学数学手抄报-小学数学手抄报版面设计图大全-----------------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~
-------------------------------------------------------精选财经经济类资料---------------------------------------------- 算术 算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了其中的一个分支。 算术规律 算术的基础在于:整数的加法和乘法服从某些规律。为了要叙述这些具有普遍性的规律,不能用像1,2,3这种表示特定数的符号。小学数学手抄报两个整数,不管它们的次序如何,它们的和相同。而 1+2=2+1 这一命题仅仅是这一般规律的一个特殊例子。因此当我们希望表示整数之间的某个关系——不论涉及的一些特定的整数值如何——是正确的,可以用字母a,b,c,…作为表示整数的符号。于是,我们所熟知的五个算术规律可叙述为: 前两个是加法和乘法的交换律,它说明人们可以交换加法或乘法中元素的次序。第三个是加法的结合律,它表明三个数相加时,或者我们把第一个加上第二个与第三个的和;或者我们把第三个加上第一个与第二个的和,其结果都相同。第四个是乘法的结合律。最后一个是分配律,它表明用一个整数去乘一个和时,我们可以用这整数去乘这和的每一项,然后把这些乘积加起来。 算术演变 算术是数学的一个分支,其内容包括自然数和在各种运算下产生的性质,运算法则以及在实际中的应用。可是,在数学发展的历史中算术的含义要广泛得多。 在中国古代,算是一种竹制的计算器具,算术是指操作这种计算器具的技术,也泛指当时一切与计算有关的数学知识。算术一词正式出现于《九章算术》中。《九章算术》分为九章,即方田、粟米等,大都是实用的名称。如“方田”是指土地的形状,讲土地面积的计算,属于几何的范围;“粟米”是粮食的代称,讲的是各种粮食间的兑换,主要涉及的是比例,属于算术的范围。可见,当时的“算术”是泛指数学的全体,与现代的意义不同。 直到宋元时代,才出现了“数学”这一名词,在数学家的菱中,往往数学与算学并用。当然,此处的数学仅泛指中国古代的数学,它与古希腊数学体系不同,它侧重研究算法。 从19世纪起,西方的一些数学学科,包括代数、三角等相继传入中国。西方传教士多使用数学,日本后来也使用数学一词,中国古算术则仍沿用“算学”。1953年,中国数学会成立数学名词审查委员会,确立起“算术”的意义,而算学与数学仍并存使用。1937年,清华大学仍设“算学系”。1939年为了统一起见,才确定专用“数学”。 产生发展 关于算数的产生,还是要从数谈起。数是用来表达、讨论数量问题的,有不同类型的量,也就随着产生了各种不同类型的数。远在古代发展的最初阶段,由于人类日常生活与生产实践中的需要,在文化发展的最初阶段就产生了最简单的自然数的概念。 自然数的一个特点就是由不可分割的个体组成。比如说树和羊-----------------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~
-------------------------------------------------------精选财经经济类资料----------------------------------------------这两种事物,如果说两棵树,就是一棵再一颗;如果有三只羊,就是一只、一只又一只。但不能说有半棵树或者半只羊,半棵树或者半只羊充其量只能算是木材或者是羊肉,而不能算作树和羊。 数和数之间有不同的关系,为了计算这些数,就产生了加、减、乘、除的方法,这四种方法就是四则运算。 把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。 在算术的发展过程中,由于实践和理论上的要求,提出了许多新问题,在解决这些新问题的过程中,古算术从两个方面得到了进一步的发展。 一方面在研究自然数四则运算中,发现只有除法比较复杂,有的能除尽,有的除不尽,有的数可以分解,有的数不能分解,有些数又大于1的公约数,有些数没有大于1的公约数。为了寻求这些数的规律,从而发展成为专门研究数的性质、脱离了古算术而独立的一个数学分支,叫做整数论,或叫做初等数论,并在以后又有新的发展。 另一方面,在古算术中讨论各种类型的应用问题,以及对这些问题的各种解法。在长期的研究中,很自然地就会启发人们寻求解这些应用问题的一般方法。也就是说,能不能找到一般的更为普遍适用的方法来解决同样类型的应用问题,于是发明了抽象的数学符号,从而发展成为数学的另一个古老的分支,指就是初等代数。-----------------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~