- 2.16 MB
- 2022-04-29 14:29:06 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'计算机图形学与图像处理04-digitalimage
Chapter4:4.1background4.2IntroductiontotheFourierTransformandtheFrequencyDomain
1.Whyweneedit?2.TheoriginalmathematicfunctionFromonedimensiontotwodimension3.ForimageprocessingapplicationFromcontinuoussignaltodiscretesignal4.Specificapplication
4.2IntroductiontotheFourierTransformandtheFrequencyDomain
4.2IntroductiontotheFourierTransformf(x):continuousfunctionofarealvariablexFouriertransformoff(x):whereEq.1
(u)isthefrequencyvariable.TheintegralofEq.1showsthatF(u)iscomposedofaninfinitesumofsineandcosinetermsand…Eachvalueofudeterminesthefrequencyofitscorrespondingsine-cosinepair.4.2IntroductiontotheFourierTransform
4.2IntroductiontotheFourierTransforminverseFouriertransform:TheabovetwoequationsaretheFouriertransformpair.
4.2IntroductiontotheFourierTransformFouriertransformpairforafunctionf(x,y)oftwovariables:andwhereu,varethefrequencyvariables.
DiscreteFourierTransformAcontinuousfunctionf(x)isdiscretizedintoasequence:bytakingMsamplesxunitsapart.M
DiscreteFourierTransformWherexassumesthediscretevalues(0,1,2,3,…,M-1)thenThesequence{f(0),f(1),f(2),…f(M-1)}denotesanyMuniformlyspacedsamplesfromacorrespondingcontinuousfunction.
DiscreteFourierTransformThediscreteFouriertransformpairthatappliestosampledfunctionsisgivenby:Foru=0,1,2,…,M-1Forx=0,1,2,…,M-1and
DiscreteFourierTransformEachtermoftheFT(F(u)foreveryu)iscomposedofthesumofallvaluesoff(x)
DiscreteFourierTransformFourierspectrum:Phase:Powerspectrum:
DiscreteFourierTransformIna2-variablecase,thediscreteFTpairis:Foru=0,1,2,…,M-1andv=0,1,2,…,N-1Forx=0,1,2,…,M-1andy=0,1,2,…,N-1AND:
4.2DiscreteFourierTransformBasicPropertiesA.F(0,0):Conclusion:F(0,0)----theaveragegrayleveloftheimage.F(0,0)----dccomponentofthespectrum(直流分量)
4.2DiscreteFourierTransformBasicPropertiesB:F(0,0)isatu=M/2andv=N/2ShiftstheoriginofF(u,v)to(M/2,N/2),i.e.Frequencyrectangle:fromu=0tou=M-1,andv=0tov=N-1(u,vintegers,M,Nevennumbers)
4.2DiscreteFourierTransformBasicPropertiesC.discerptible(拆分)
4.2DiscreteFourierTransform
4.2DiscreteFourierTransform
Iff(x,y)isanimage,thevalueoftheFouriertransformattheorigin(F(0,0))isequaltotheaveragegrayleveloftheimage.F(0,0)sometimesiscalledthedccomponentofthespectrum.
4.2DiscreteFourierTransform1.Multiplytheinputimageby(-1)x+ytocentrethetransform,asindicatedin(4.2.21)2.ComputeF(u,v),theDFToftheimagefromstep1.3.MultiplyF(u,v)byafilterfunctionH(u,v).4.ComputetheinverseDFToftheresult3.5.Obtaintherealpartoftheresult4.6.Multiplytheresultin5by(-1)x+y.
Basicstepsforfilteringinthefrequencydomain
P159Theimportantpointtokeepinmindisthatthefilteringprocessisbasedonmodifyingthetransformofanimageinsomewayviaafilterfunction,andthentakingtheinverseoftheresulttoobtaintheprocessedoutputimage.
Somebasicfiltersp159Thefilterjustdiscussediscalledanotchfilter(陷波滤波器)becauseitisaconstantfunctionwithahole(notch)attheorigin.Afterfilter,theaveragegraylevelofthisimageshouldbezero.
SomebasicfiltersLowfrequenciesintheFouriertransformareresponsibleforthegeneralgray-levelappearanceofanimageoversmoothareas.Highfrequenciesareresponsiblefordetail,suchasedgesandnoise.
SomebasicfiltersAfilterthatattenuateshighfrequencieswhile“passing”lowfrequenciesiscalledalowpassfilter.(低通滤波器)Afilterthathastheoppositecharacteristicisappropriatelycalledahighpassfilter.(高通滤波器)
SomebasicfiltersAlowpass-filteredimagewillhavelesssharpdetailthantheoriginalbecausethehight-frequencieshavebeenattenuated.Ahighpass-filteredimagewillhavelessgraylevelvariationsinsmoothareasandemphasizedtransitionalgray-leveldetail,andtheimageappearsmoresharper.
CorrespondencebetweenFilteringintheSpatialandFrequencyDomainsThemostfundamentalrelationshipbetweenthespatialandfrequencydomainsisestablishedbyawell-knownresultcalledtheconvolution(卷积)theorem.
CorrespondencebetweenFilteringintheSpatialandFrequencyDomains
CorrespondencebetweenFilteringintheSpatialandFrequencyDomains
4.3SmoothingFrequency-DomainFiltersTheobjectiveistoselectafiltertransferfunctionH(u,v)thatyieldsG(u,v)byattenuatingthehigh-frequencycomponentsofF(u,v).p167
4.3.1IdealLowpassFiltersThesimplestlowpassfilterwecanenvisionisafilterthat“cutsoff”allhigh-frequencycomponentsoftheFouriertransformthatareatadistancegreaterthanaspecifieddistanceD0fromtheoriginofthetransform.
IdealLowpassFilters
IdealLowpassFilters
IdealLowpassFilters
IdealLowpassFiltersExplanationofblurringandringingpropertiesoftheILPF
GFdesignu,varethecoordinateinfrequencydomainH(-1,-1)H(-1,0)H(-1,1)H(0,-1)H(0,0)H(0,1)H(1,-1)H(1,01)H(1,1)
4.4SharpeningFrequencyDomainFiltersImagesharpeningcanbeachievedinthefrequencydomainbyahighpassfilteringprocess,whichattenuatesthelow-frequencycomponentswithoutdisturbinghigh-frequencyinformationintheFT.p180
HighpassFilters
HighpassFilters
HighpassFilters
HighpassFilters
HomomorphicFilters(同态滤波器)
HomomorphicFilters(同态滤波器)
普洒阳光心语,甘泉滋润人心——学会做一个快乐的人四(6)中队
同学们好,大家都想和快乐在一起,天天快乐,时时快乐。可是生活、学习中我们总会遇上这样那样不顺心的事。这不,今天早晨我来上班,在快到拐弯处时横冲出来一个人,老师赶快捏闸险些摔倒了。谁知此人丝毫没有察觉,扬长而去。这使我非常生气,这人既不遵守交通规则,又不珍惜自己的生命,太不应该了。老师心里很不愉快。是啊,生活中,让人生气、让人烦恼、让人痛苦的事情太多了,同学们,在你的生活中,遇到过不快乐的事情吗?
听故事:《国王长了一只兔耳朵》
观看心理小品,评析是非:
情境游戏:《猜一猜》
享用“心理快餐”
生活中常用的能创造快乐,发泄不良情绪的办法:★读有趣的书;★至少培养自己有一种兴趣爱好;★经常与家人、同学、朋友在一起,谈心、玩耍;★照镜子,与镜中的人说说话;★到没有人的地方大声喊叫;★在劳动创造中体会快乐……
再见'
您可能关注的文档
- 最新解三角形课件高三复习课课件PPT.ppt
- 最新解剖学【纵隔淋巴结断层解剖】课件PPT.ppt
- 最新解方程例4、例5PPt课件PPT.ppt
- 最新解剖生理课件--呼吸系统(非常好)课件PPT.ppt
- 最新變異數分析期末報告Cushing(庫欣症)课件PPT.ppt
- 最新變異的Prion蛋白進入體內後會誘導正常的PrP變成變異的Prion蛋白课件PPT.ppt
- 最新變異數期末報告课件PPT.ppt
- 最新變異數分析第九組课件PPT.ppt
- 最新计步器课件PPT.ppt
- 最新计算机体系结构浙江课件PPT.ppt
- 最新计算机体系结构浙江(1)课件PPT.ppt
- 最新计算机学科的科学问题-PowerPointPresentation.课件PPT.ppt
- 最新计算机基础知识治疗MQ课件PPT.ppt
- 最新计算机控制技术第三章-数字控制器的模拟化设计课件PPT.ppt
- 最新计算机硬件课件PPT.ppt
- 最新计算机硬件系统的基本组成概要课件PPT.ppt
- 最新计算机硬件第3章-4串操作指令课件PPT.ppt
- 最新计算机组成原理复习-任国林版课件PPT课件.ppt