• 1.34 MB
  • 2022-04-29 14:35:01 发布

感受可能性学案课件PPT.ppt

  • 24页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
' 守株待兔 9.1感受可能性胡衍伟 学习目标:1.通过执骰子活动,经历猜测、实验、收集数据、分析实验结果等过程,体会数据的随机性.2.理解随机事件观念,能区分确定事件与不确定事件,并感受不确定事件的可能性有大有小. 猜一猜、想一想骰子(tóuzi),亦作色(shǎi)子如果随机投掷一枚均匀的骰子,那么⒈掷出的点数会是10吗?不会⒉掷出的点数一定不超过6吗?一定⒊掷出的点数一定是1吗?不一定 探究新知一思考下列事件(一):1.3个人分成两组,一定有2个人分在同一组;2.太阳从东方升起;3.如果今天星期三,那么明天是星期四;★这些事情我们事先肯定它一定会发生,这些事件称为必然事件。 ⒋太阳从西方升起;探究新知一⒌负数大于正数;6.掷一枚均匀的骰子,掷出的点数是10;★这些事情我们事先肯定它一定不会发生,这些事件称为不可能事件。★必然事件和不可能事件都是确定事件。 思考下列事件(二):探究新知二⒈南张镇2014年5月1日会下雨;⒉掷一枚硬币,有国徽的一面朝上;⒊买彩票恰好中奖;⒋打开电视,正在播放动画片。 ★一件事情我们事先无法肯定它会不会发生,这样的事件称为不确定事件,,也称为随机事件。探究新知二 巩固新知议一议:请同学们对下面的事件进行分类①太阳从东方升起;②太阳从西方落下;③明天是晴天;④掷骰子支出点数是5;⑤1+1=2;⑥1+1=3;⑦我们班20号是女生;⑧打开电视正在播放广告;⑨刻舟求剑;⑩拋一枚硬币,正面朝上。确定事件有:①②⑤⑥⑦⑨不确定事件有:③④⑧⑩ 游戏1:掷骰子做一做:利用质地均匀的骰子做游戏,规则如下:(1)两人同时游戏,各自掷一枚骰子,每人可以只掷一次骰子,也可以连续地掷几次骰子。(2)当掷出的点数和不超过10时,如决定停止掷,那么你的得分就是所掷出的点数和;当掷出的点数和超过10时,必须停止掷,并且你的得分为0。(形如偷十点半)(3)比较两人的得分,谁的得分多谁就获胜。 多做几次上面的游戏,并将最终结果填入下表:第1次点数第2次点数第3次点数…得分第一次游戏甲…乙…第二次游戏甲…乙…第三次游戏甲…乙……………………1546352532614522510900109 议一议:在做游戏时,如果前面掷出的点数和已经是5,你是决定继续掷还是决定停止掷?如果掷出的点数和已经是9呢?甲生认为:掷出的点数和已经是5,根据游戏规则,再掷一次,如果点数不是6,那么我的得分就会增加,而掷出的点数不是6的可能性要比是6的可能性大,所以我决定继续掷。乙生认为:掷出的点数和已经是9,再掷一次,如果点数不是1,那么我的得分就会变成0,而掷出的点数是1的可能性要比不是1的可能性小,所以我决定停止掷。你认为他们俩的说法有道理吗? 游戏2:摸球甲袋中有10个白球,乙袋中有10个红球,丙袋中有红球、白球共10个,且三个袋中所有的球除颜色外,完全相同;甲乙丙 游戏2:摸球判断下列事件各是什么事件:1.从甲袋中摸到一球是红球。()2.从甲袋中摸到一球是白球。()3.从乙袋中摸到一球是红球。()不可能事件必然事件必然事件4.从乙袋中摸到一球是白球。()5.从丙袋中摸到一球是红球。()6.从丙袋中摸到一球是白球。()不可能事件不确定事件不确定事件 游戏2:摸球若丙盒中装有红球,白球共有10个,每个球除颜色外其他相同。每次任意摸出一个球,记录下所摸球的颜色,并将球放回到盒中。将结果填在下表中:球的颜色红色白色摸到次数4753丙 探究新知三可能性的大小◆在上面的摸球活动中,每次摸到的球的颜色是不确定的。◆如果红球和白球的数量不等,那么摸到红球的可能性与摸到白球的可能性是不一样的。★一般地,不确定事件发生的可能性是有大有小的。 随堂练习1.下列事件中,哪些是确定事件?哪些是不确定事件?(1)将油滴入水中,油会浮在水面上;(2)任意掷一枚质地均匀的骰子,掷出的点数是奇数。答:(1)是确定事件;(2)是不确定事件。2.小明任意买一张电影票,座位号是2的倍数与座位号是5的倍数的可能性哪个大?答:因为座位号是2的倍数的电影票比座位号是5的倍数的电影票多,所以座位号是2的倍数的可能性比较大。 小结事件确定事件不确定事件必然事件不可能事件(一定会发生)(一定不会发生)(发生的可能性有大有小)特别注意:不可能事件是属于确定事件而不属于不确定事件。作业:<同步学习>第52页基础自测 '