- 1.22 MB
- 2022-04-29 14:36:01 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
'用样本估计总体
1.5.1用样本估计总体
教学目标1、知识与技能:(1) 通过实例体会分布的意义和作用.(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图.(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.2、过程与方法:通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.3、情感态度与价值观:通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系.
思考3:以组距为0.5进行分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?思考4:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?[0,0.5),[0.5,1),[1,1.5),…,[4,4.5].
分组频数累计频数频率[0,0.5)40.04[0.5,1)正80.08[1,1.5)正正正150.15[1.5,2)正正正正220.22[2,2.5)正正正正正250.25[2.5,3)正正140.14[3,3.5)正一60.06[3.5,4)40.04[4,4.5]20.02合计1001.00
思考5:上表称为样本数据的频率分布表,由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种什么统计思想?用样本的频率分布估计总体分布.
思考6:如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布表,你对制定居民月用水量标准(即a的取值)有何建议?88%的居民月用水量在3t以下,可建议取a=3.思考7:在实际中,取a=3t一定能保证85%以上的居民用水不超标吗?哪些环节可能会导致结论出现偏差?分组时,组距的大小可能会导致结论出现偏差,实践中,对统计结论是需要进行评价的.
思考8:对样本数据进行分组,其组数是由哪些因素确定的?了解:对样本数据进行分组,组距的确定没有固定的标准,组数太多或太少,都会影响我们了解数据的分布情况.数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多.按统计原理,若样本的容量为n,分组数一般在(1+3.3lgn)附近选取.当样本容量不超过100时,按照数据的多少,常分成5~12组.若以0.1或1.5为组距对上述100个样本数据分组合适吗?
思考10:一般地,列出一组样本数据的频率分布表可以分哪几个步骤进行?第一步,求极差.(极差=样本数据中最大值与最小值的差)第二步,决定组距与组数.(设k=极差÷组距,若k为整数,则组数=k,否则,组数=k+1)第三步,确定分点,将数据分组.第四步,统计频数,计算频率,制成表格.(频数=样本数据落在各小组内的个数,频率=频数÷样本容量)
知识探究(二):频率分布直方图思考1:为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的图形表示:月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O
上图称为频率分布直方图,其中横轴表示月均用水量,纵轴表示频率/组距.频率分布直方图中各小长方形的和高度在数量上有何特点?月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O宽度:组距高度:频率组距
思考2:频率分布直方图中各小长方形的面积表示什么?各小长方形的面积之和为多少?月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O各小长方形的面积=频率各小长方形的面积之和=1
思考3:频率分布直方图非常直观地表明了样本数据的分布情况,使我们能够看到频率分布表中看不太清楚的数据模式,但原始数据不能在图中表示出来.你能根据上述频率分布直方图指出居民月均用水量的一些数据特点吗?月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O
(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O(2)大部分居民的月均用水量集中在一个中间值附近,只有少数居民的月均用水量很多或很少;(3)居民月均用水量的分布有一定的对称性等.
思考4:样本数据的频率分布直方图是根据频率分布表画出来的,一般地,频率分布直方图的作图步骤如何?第一步,画平面直角坐标系.第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度.第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形.
思考5:对一组给定的样本数据,频率分布直方图的外观形状与哪些因素有关?在居民月均用水量样本中,你能以1为组距画频率分布直方图吗?与分组数(或组距)及坐标系的单位长度有关.月均用水量/t频率组距0.40.30.20.112345O
理论迁移例1某地区为了了解知识分子的年龄结构,随机抽样50名,其年龄分别如下:42,38,29,36,41,43,54,43,34,44,40,59,39,42,44,50,37,44,45,29,48,45,53,48,37,28,46,50,37,44,42,39,51,52,62,47,59,46,45,67,53,49,65,47,54,63,57,43,46,58.(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计年龄在32~52岁的知识分子所占的比例约是多少.题型一 频率分布直方图的画法及应用
(1)极差为67-28=39,取组距为5,分为8组.分组频数频率[27,32)30.06[32,37)30.06[37,42)90.18[42,47)160.32[47,52)70.14[52,57)50.10[57,62)40.08[62,67)30.06合计501.00样本频率分布表:
(2)样本频率分布直方图:年龄0.060.050.040.030.020.01273237424752576267频率组距O(3)因为0.06+0.18+0.32+0.14=0.7,故年龄在32~52岁的知识分子约占70%.
将直方图各块顶端中点连线你会发现什么呢?:年龄0.060.050.040.030.020.01273237424752576267频率组距O思考:若组距取得越小,则频率折线的光滑程度会怎样?越光滑频率分布折线图
如果样本容量足够大,分组的组距取得足够小,则频率折线图将趋于一条光滑的曲线:年龄0.060.050.040.030.020.01273237424752576267频率组距O总体密度曲线
调查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:171163163166166168168160168165171169167169151168170168160174165168174159167156157164169180176157162161158164163163167161(1)作出频率分布表;(2)画出频率分布直方图.解(1)最低身高151cm,最高身高180cm,它们的差是180-151=29(cm),即极差为29cm;确定组距为3,组数为10,列表如下:【训练1】
(2)频率分布直方图如图所示.
美国历届总统中,就任时年纪最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48.【例2】题型二 频率分布折线图的画法及应用
(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.
解(1)以4为组距,列频率分布表如下:
频率分布直方图和频率分布折线图如图所示.(2)从频率分布表中可以看出,将近60%的美国总统就任时的年龄在50岁至60岁之间,45岁以下以及65岁以上就任的总统所占的比例相对较小.
50辆汽车经过某一段公路的时速记录如图所示:将其分成7组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图以及频率分布折线图;(3)根据上述结果,估计汽车时速在哪组的概率最大?【训练2】
解(1)由茎叶图知,数据最大值为33,最小值为13,分为7组,组距为3,则频率分布表为:
(2)频率分布直方图及频率折线图如图所示:(3)汽车时速在[21.5,24.5)内的频率最大,为0.22.
(12分)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:【例3】题型三 图形信息题
(1)填充频率分布表的空格(将答案直接填在表格内);(2)补全频率分布直方图;(3)若成绩在75.5分~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?
审题指导本题考查了频率分布直方图的相关知识,将图形中的信息转化为我们需要的信息,这是利用图形解题的关键,也是转化化归思想的重要体现.[规范解答](1)频率分布表如下:4分
(2)频率分布直方图如图所示.
所以成绩在75.5分~80.5分的学生频率为0.1,成绩在80.5分~90.5分的学生频率为0.32.所以成绩在80.5分~85.5分的学生频率为0.16,所以成绩在75.5分~85.5分的学生频率为0.26,由于有900名学生参加了这次竞赛,所以该校获得二等奖的学生约为0.26×900=234(人).12分【题后反思】(1)在频率分布直方图中,各小矩形的面积之和等于1.(2)频数/相应的频率=样本容量.
为了了解某校初中毕业男生的体能状况,从该校初中毕业班学生中抽取若干名男生进行铅球测试,把所得数据(精确到0.1米)进行整理后,分成6组画出频率分布直方图的一部分(如下图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(1)请将频率分布直方图补充完整;【训练3】
(2)该校参加这次铅球测试的男生有多少人?(3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球测试的成绩的合格率.解(1)由频率分布直方图的意义知,各小组频率之和为1,故第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14.易知第6小组与第3小组的频率相等,故两个小长方形等高,图略.(3)由图可知,第4、5、6小组成绩在8.0米以上,其频率之和为0.28+0.30+0.14=0.72.故合格率为72%.
小结1.频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律.我们通常用样本的频率分布表或频率分布直方图去估计总体的分布.2.频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.
3.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况,并由此估计总体的分布情况.
期末考试复习计划——319寝室
距离期末考试还有不到一个月的时间了,大家心里或许充满着紧张抑或是激动。但无论如何,都需要一个好的复习计划和良好的心态,才能让我们在考试中取得成功。
一、制定复习计划,增强复习计划性。——“工欲善其事,必先利其器”。
无论做什么事,都要事先做好准备。期末复习是期末考试取得好成绩的有力保证,每位学生应在思想上高度重视,不能马虎应付,你在制定复习阶段计划时必须弄清以下几个问题:复习时间、考试内容、考试时间。
然后制定自己的复习计划和每天学习时间安排,以便在有限的时间内复习完全部复习内容,增强复习的计划性,每天对计划完成情况进行简单的检查分析,落实复习计划,确保复习的质量。
二、讲究复习方法,提高复习效率。
1、扎实基础知识,落实基本技能。在自己主动复习时,要注意回归教材,精读课本,扎实掌握基础知识和基本技能。安排一部分课余的时间对各科基础知识进行主动复习,内容一项一项地整理、归纳,真正搞清楚,弄明白。
在复习过程中,要充分发挥自己的学习主动性,找规律、抓特点,对所学知识进行归纳和总结,使之条理化和系统化,内化成自己的知识;对于不会的知识点要主动向老师或同学请教,不要放过每一个疑点,不遗漏每一个重点,不忽视每一个考点。
2、强化能力训练,主动查漏补缺。
在复习基础知识和落实基本技能的基础上,再加强能力测试题型的解题思路和解题技巧的训练,对能力测试题型存在的缺漏进行补强,弄清“会了什么?”、“还有什么不会?”,发现疑难薄弱,采取同题练习,重点突破,提高综合解题能力,以求尽善尽美。
查漏补缺可以看错题集,温故知新,避免一错再错。期末复习时将自己平时归纳整理的错题集和以往的考试卷拿出来看一看,研究曾经出现的问题,了解出错的症结,以免重蹈覆辙。实践证明,考前看错题集,是一种非常便捷有效的复习方法。
3、重视模拟训练,提高解题能力。
学校老师编印的期末综合练习是老师根据各科考试要求而编印有针对性的模拟试卷,主要是供我们复习使用,试题绝不能拿过来做一遍,一对答案了事。而应该在全面复习的基础上再做模拟试卷,并按期末考试的要求独立完成,养成认真审题、规范书写、细心检查的习惯,做到不看错题、不漏题、不误答、不潦草,以减少失误。
做完后核对答案,进行试卷分析,查漏补缺,对考试中存在的不足,必须在期末考前自己主动做好整改。对试卷作分析时注意回答以下三个问题:“考试成功在哪里?不足在哪里?今后怎办?”。最后再做一至两套期末考试模拟试题,熟悉考试题型,提高解题速度和综合解题能力。
三、讲究应考技巧,提高考试成绩。
在考场上要有暗自鼓励的习惯,相信自己能行,以良好的心理状态投入考试,先浏览全卷,弄清题量,遵循由易到难,合理安排解题速度,每分志在必得,会做一定做全对,不会做乱乱作;别人会做的我要做对,别人不会做的我能做些。
另外,细心亦是助你考试成功的捷径:1、考试前细心,不要丢三落四,带好考试所需的一切学习工具2、考试时细心,切勿出现漏题漏字现象。
最后,祝大家能在距离期末这不到一个月的日子里,能以良好的学习方法让自己的成绩更上一层楼!!!
谢谢大家!'
您可能关注的文档
- 最新生鲜商品损耗治理课件PPT.ppt
- 最新用789的乘法口诀求商课件PPT.ppt
- 最新用MAST语言建立变压器模型课件PPT.ppt
- 最新用代入消元法解二元一次方程组.......课件PPT.ppt
- 最新用乘法解决问题课件PPT.ppt
- 最新用公式法解一元二次方程第一课时课件PPT.ppt
- 最新用制度管人,按规章办事课件PPT.ppt
- 最新用坐标表示平移课件PPT.ppt
- 最新用字母表示数加法交换律和结合律p13课件PPT.ppt
- 最新用数字万用表测二极管(带仪器介绍)课件PPT.ppt
- 最新用流程复制----围绕核心流程重塑企业的执行基因课件PPT.ppt
- 最新用百分数解决问题(二)课件课件PPT.ppt
- 最新用表格表示的变量之间关系课件PPT.ppt
- 最新用闪光灯拍夜景及人像的效果课件PPT.ppt
- 最新由环保署组成‘机关绿色采购绩效评核小组’课件PPT.ppt
- 最新甲亢的核素诊断与治疗课件PPT.ppt
- 最新甲状腺功能亢进症护理查房(1)课件PPT.ppt
- 最新甲状腺功能亢进症诊疗常规(2)课件PPT.ppt