• 2.14 MB
  • 2022-04-29 14:37:21 发布

最新高中生物复习通过神经系统调节课程-必修3课件PPT.ppt

  • 141页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'高中生物复习通过神经系统调节课程-必修3 一、神经调节的结构基础和反射[判断正误]1.反射是一切动物神经调节的基本方式。(×)2.反射可分为非条件反射和条件反射,非条件反射可转化为条件反射。(√)3.反射弧由五部分组成,其中感受器是感觉神经末梢,效应器是传出神经末梢。(×) 四、人脑的高级功能[连线] 2.反射弧(1)结构(如图所示) 1.反射弧各部分的判断方法(1)根据是否具有神经节,有神经节的是传入神经。(2)根据脊髓灰质结构判断,与(粗大)前角相连的为传出神经,与后角(狭小)相连的为传入神经。(3)根据脊髓灰质内突触结构判断,兴奋在突触中的传递是单向的,突触结构简图: ,兴奋传递方向:→。 2.有关问题分析(1)反射活动需要经过完整的反射弧来实现。组成反射弧的任何部分受到损伤,反射活动都不能完成。(2)感受器、传入神经和神经中枢破坏后,产生的结果相同,但机理不同:①感受器破坏无法产生兴奋;②传入神经破坏兴奋无法传导;③神经中枢破坏,无法对兴奋进行分析综合。 (3)刺激感受器或传出神经元,信息都能传到效应器而使效应器产生相同的效应。(4)神经中枢的兴奋只影响效应器的效应活动而不影响感受器的敏感性。 [特别提醒]反射必须有完整的反射弧参与。刺激传出神经或效应器,都能使效应器产生效应,但却不属于反射。 1.现象Ⅰ:小明的手指不小心碰到一个很烫的物品而将手缩回;现象Ⅱ:小明伸手拿别人的物品被口头拒绝而将手缩回。两个现象中的缩手反应比较见下表,正确的是() 选项比较项目现象Ⅰ现象ⅡA反射弧的完整性不完整完整B是否需要大脑皮层参与可以不要一定需要C参与反射的神经元数量多少D缩手相关肌细胞数量多少 解析:现象Ⅰ、现象Ⅱ的缩手反应都能够完成,这说明参与现象Ⅰ和现象Ⅱ的反射弧完整,反射弧只有保持完整性才能进行反射活动。现象Ⅰ是可以不需要大脑皮层参与的低级反射,现象Ⅱ,拿别人物品被口头拒绝而将手缩回,需要大脑皮层参与。现象Ⅰ参与反射的神经数量少;现象Ⅱ参与反射的神经数量多。缩手相关肌细胞数量两个现象应当一样多。答案:B 2.某人不小心从高处摔下,到医院检查,下列与确定此人神经中枢受损无关的检查是()A.针刺双脚观察是否有反应B.检查血细胞的数量是否有变化C.检查膝跳反射是否正常D.要求此人复述医生的一段话 解析:针刺双脚的反应和膝跳反射的完成途径是反射弧,反射弧具有完整性,反射才能完成;能否复述医生的一段话与听觉中枢、运动中枢和语言中枢是否受损有关;血细胞的数量多少与神经中枢无关。答案:B 2.兴奋在神经纤维上的传导——电传导(1)传导过程 (2)传导特点:双向传导,即刺激神经纤维上的任何一点,所产生的神经冲动可沿神经纤维向两侧同时传导。 1.膜电位的测量(1)静息电位:灵敏电流计一极与神经纤维膜外侧连接,另一极与膜内侧连接(如图甲),只观察到指针发生一次偏转。(2)兴奋电位:灵敏电流计都连接在神经纤维膜外(或内)侧(如图乙),可观察到指针发生两次方向相反的偏转。 2.兴奋在神经纤维上的传导方向与局部电流方向的关系(1)在膜外,局部电流的方向与兴奋传导方向相反。(2)在膜内,局部电流的方向与兴奋传导方向相同。 [特别提醒]只有在离体神经纤维上兴奋的传导是双向的,在反射活动进行时,兴奋在神经纤维上是单向传导的。 3.下列关于神经兴奋的叙述,错误的是()A.兴奋部位细胞膜两侧的电位表现为膜内为正、膜外为负B.神经细胞兴奋时细胞膜对Na+通透性增大C.兴奋在反射弧中以神经冲动的方式双向传递D.细胞膜内外K+、Na+分布不均匀是神经纤维兴奋传导的基础 解析:受到一定强度的刺激时,钠离子通道打开,导致Na+大量内流,所以由外正内负转变为外负内正;兴奋在神经元之间的传导是通过突触完成的,只能单向传递。答案:C 4.神经细胞在静息时具有静息电位,受到适宜刺激时可迅速产生能传导的动作电位,这两种电位可通过仪器测量。A、B、C、D均为测量神经纤维静息电位示意图,正确的是() 解析:静息状态下,神经纤维膜内带负电,膜外带正电,A项的一极在膜内,另一极在膜外,会产生电位差,形成电流,电流计偏转。C、B、D三项的两极同时在膜内或同时在膜外,测不到静息电位。答案:A 1.突触的常见类型 A.轴突—胞体型:B.轴突—树突型: 2.传递过程 1.兴奋传导与电流表指针偏转问题分析(1)在神经纤维上①刺激a点,b点先兴奋,d点后兴奋,电流计发生两次方向相反的偏转。②刺激c点(bc=cd),b点和d点同时兴奋,电流计不发生偏转。 (2)在神经元之间 ①刺激b点,由于兴奋在突触间的传递速度小于在神经纤维上的传导速度,a点先兴奋,d点后兴奋,电流计发生两次方向相反的偏转。②刺激c点,兴奋不能传至a,a点不兴奋,d点可兴奋,电流计只发生一次偏转。 2.有关问题归纳分析(1)神经递质释放方式为胞吐,体现了生物膜的结构特点——流动性。递质被突触后膜上的受体(糖蛋白)识别,其作用效果有两种:促进或抑制。(2)同一神经元的末梢只能释放一种神经递质,或者是兴奋性的,或者是抑制性的。(3)递质的去向:神经递质发生效应后,就被酶破坏而失活,或被移走而迅速停止作用。(4)在一个反射活动的完成过程中,同时存在兴奋在神经纤维上传导和神经元之间的传递,突触数量的多少决定着该反射活动所需时间的长短。 5.如图表示两个神经元之间连接的一种形式,据图判断以下说法正确的是()A.电信号到达“1”,依赖“3”结构中的化学物质传递到Ⅱ,但到达Ⅱ时又转换为电信号B.每个神经元一般只有一个轴突和一个Ⅰ结构C.突触的连接方式只有轴突—胞体这一种D.“3”结构的形成,只有高尔基体参与 解析:突触的连接方式有:轴突—树突型、轴突—胞体型等;Ⅰ结构表示突触小体,每个神经元可以有多个Ⅰ结构;囊泡可以由内质网或高尔基体产生。答案:A 6.甲图表示反射弧的结构模式图,乙图表示神经纤维局部放大后膜内外电荷的分布情况,下列叙述不正确的是(). A.在甲图中,兴奋在②处以电信号形式传导,兴奋在③处以化学信号形式传递B.在乙图中,表示兴奋部位的是b,其膜电位特点是外负内正C.如果刺激点到①和d处距离相等,那么刺激后兴奋传到①和传递到d的时间相同D.在甲图中,给予②处一个强刺激,电流计指针不发生偏转 解析:由于兴奋在神经元之间传递是单向的,所以在甲图中刺激点产生的兴奋不能传到d处。答案:C 命题角度——反射与兴奋的传导(1)从新课标地区生物试题看,考点主要分布于以下几个方面:①神经元间的兴奋传递与神经纤维上兴奋的传导生理过程的比较,如2010年全国新课标卷T5,广东卷T6,浙江卷T5;2009年江苏卷T2,宁夏卷T5。②反射弧各部分的作用及异常分析。如2010年江苏卷T13,北京卷T3;2009年广东卷T35。 (2)针对兴奋在神经纤维上的传导和兴奋在神经元间的传递进行的实验设计,探究兴奋传递的方向等实验分析题是近几年高考试题的命题热点。 图甲是反射弧结构模式图,a、b分别是放置在传出神经元和骨骼肌上的电极,用于刺激神经和骨骼肌;c是放置在传出神经元上的电表,用于记录神经兴奋电位变化。请分析回答下列问题: (1)图甲中的d表示________;最简单的反射弧由________种神经元组成。(2)若将该反射弧放入较低浓度的钠盐培养液中,传入神经元静息时,膜内Na+浓度将________(高于、低于、等于)膜外。(3)用a刺激神经,c测到的电位变化如乙图。膜电位从③到④变化时,膜上打开的离子通道是________。 (4)正常时,分别用a、b刺激神经和骨骼肌,会引起骨骼肌收缩。某同学用a刺激神经,发现骨骼肌不收缩。是传出神经元受损、d部位受损还是骨骼肌受损导致骨骼肌不收缩?为探究骨骼肌不收缩的原因,该同学利用图甲中的反射弧,设计了如下实验方案。(注:只考虑一个部位受损)请根据该实验步骤预测现象及结论。 第一步:用a刺激神经,观察c的电位变化和骨骼肌是否收缩;如果__________________,则说明传出神经元受损。如果__________________,则要继续往下做实验。第二步:用b刺激骨骼肌,观察骨骼肌是否收缩。如果__________________,则说明部位d受损。如果__________________,则说明骨骼肌受损。 [解析](1)图中d是传出神经末梢与肌肉的接点,即由神经与肌肉形成的突触。最简单的反射弧也应含有传入神经元和传出神经元。(2)静息状态下,神经细胞内Na+低于细胞外,但K+高于细胞外。(3)图2中①→③是动作电位的产生过程,即兴奋过程,③→④是兴奋后的恢复过程,此时K+外流。(4)若传出神经受损,则刺激a处,c处不能测得电位变化;若骨骼肌受损,则刺激b处,骨骼肌不收缩。 [答案](1)神经肌肉接点或突触2(2)低于(3)钾通道(4)在c处不能记录到电位变化,骨骼肌不收缩 在c处记录到电位变化,骨骼肌不收缩 骨骼肌收缩 骨骼肌不收缩 1.验证冲动在神经纤维上的传导(1)方法设计:电激右图中①处,观察A的变化,同时测量②处的电位有无变化。(2)结果分析:若A有反应,且②处电位改变,说明冲动在神经纤维上的传导是双向的;若A有反应而②处无电位变化,则说明冲动在神经纤维上的传导是单向的。本讲实验——兴奋传导方向及特点的实验探究 2.验证冲动在神经元之间的传递(1)方法设计:先电激图①处,测量③处电位变化;再电激③处,测量①处的电位变化。(2)结果分析:若两次实验的检测部位均发生电位变化,说明冲动在神经元间的传递是双向的;若只有一处电位改变,则说明冲动在神经元间的传递是单向的。 下图为反射弧的模式图。请分析回答相关问题: (1)结构4是反射弧组成中的________。(2)5处的细胞与2处的细胞在形态结构上有较大的差异,造成这一差异的根本原因是______________________。(3)若该图是完成人处于寒冷环境时的体温调节反射弧,则结构1为__________________。 (4)若在3处给予一适宜刺激,则在1、2、3、4处可发生钠离子内流现象的是____________________。(5)某种药物可以阻断蟾蜍屈肌反射活动。为了证明这种药物“在反射弧中仅对神经细胞间的兴奋传递有阻断作用”,请利用图中的A、B、C三处实验点,提出你的实验设计方案:____________________________________________________________________________________。 [解析](1)通过识图判断一个完整反射弧各部分的结构名称,可根据图中神经节的位置确定,与之相连的是感受器,其他结构就可迎刃而解了。(2)5处是效应器细胞,2处是传入神经细胞,其形态结构的差异是细胞分化的结果,而细胞分化的根本原因是基因的选择性表达。(3)图中1是感受器,若在寒冷环境中就是冷觉感受器。(4)钠离子内流只在兴奋部位发生,图中3处受到刺激,产生的兴奋不能通过突触传到1、2处,所以只有3、4处会兴奋,会发生钠离子内流现象。 (5)本实验验证的问题是该药物“仅”对神经细胞间的兴奋传导有阻断作用,那么自变量的选择上就要设计如下对比实验:一组要将药物放在神经纤维上,观察该药物能否阻断兴奋在神经纤维上的传导;另一组必然将药物放在突触间隙,观察该药物能否阻断兴奋在神经元间的传递。其对比的结果证明该药物“仅”对神经细胞间的兴奋传递有阻断作用。 [答案](1)传出神经(2)细胞内基因的选择性表达(3)冷觉感受器(4)3和4(5)①将药物放在A,刺激B,观察5处肌肉是否收缩;②将药物放在C,刺激B,观察5处肌肉是否收缩 1.(2010·新课标全国卷)将神经细胞置于相当于细胞外液的溶液(溶液S)中,可测得静息电位。给予细胞一个适宜的刺激,膜两侧出现一个暂时性的电位变化,这种膜电位变化称为动作电位。适当降低溶液S中的Na+浓度,测量该细胞的静息电位和动作电位,可观察到()A.静息电位值减小B.静息电位值增大C.动作电位峰值升高D.动作电位峰值降低 解析:静息电位主要是由于膜内K+流向膜外引起的,表现为膜外正电荷多,膜内负电荷多;动作电位主要是由于膜外Na+流向膜内引起的,表现为外负内正。所以当膜外Na+浓度适当降低时,主要影响动作电位,使动作电位峰值降低。答案:D 2.(2010·北京高考)以下依据神经细胞功能做出的判断,不正确的是()A.膝跳反射弧中传出(运动)神经元的轴突较长B.膝跳反射弧中传入(感觉)神经元的树突较多C.突触前膜释放的递质(如乙酰胆碱)始终不被酶分解D.分泌肽类激素旺盛的神经细胞核糖体较多. 解析:膝跳反射中的传出神经元和传入神经元属于典型的神经元,一个典型的神经元具有一条长而分枝少的轴突和多条短而分枝多的树突。突触前膜释放的递质通过突触间隙作用于突触后膜,使下一个神经元兴奋或抑制,递质将被酶分解。肽类激素合成的场所是核糖体,因而分泌肽类激素旺盛的神经细胞核糖体较多。答案:C 3.(2010·广东高考)重症肌无力患者由于体内存在某种抗体,该抗体与神经—肌肉突触的受体特异性结合,使该受体失去功能,最终导致()A.刺激神经不能引起肌肉收缩B.出现全身性过敏反应C.肌肉对神经递质的反应性提高D.机体对病原体的反应能力提高 解析:A项,由于受体失去功能,刺激神经产生的神经递质不能与受体结合,因而肌肉不能收缩;B项,由于题中的抗体只与神经—肌肉突触的受体特异性结合,而不是全身所有突触的受体,因而不能导致全身性过敏反应;C项,由于受体失去功能,神经递质就不能与受体特异性结合,因而肌肉对神经递质的反应性降低;D项,由于受体失去功能,病原体不能与之特异性结合,生物体的病理特征就不能表现出来,因而机体对病原体的反应能力下降。答案:A 4.(2010·江苏高考)右图为反射弧结构示意图,相关叙述中错误的是()A.伸肌肌群内既有感受器也有效应器B.b神经元的活动可受大脑皮层控制C.若在Ⅰ处施加一个有效刺激,a处膜电位的变化为:内负外正→内正外负→内负外正D.在Ⅱ处施加刺激引起屈肌收缩属于反射 解析:观察反射弧结构图,Ⅰ上有神经节,判定其为传入神经,伸肌肌群既连有传入神经又连有传出神经,判定其内既有感受器也有效应器;b神经元位于脊髓内,其活动可受大脑皮层控制;若在Ⅰ处施加一个有效刺激,兴奋向两端传导,a处膜电位变化由静息电位(内负外正)→动作电位(内正外负)→静息电位(内负外正);在Ⅱ处施加刺激引起屈肌收缩不属于反射,原因是没有通过完整的反射弧。答案:D 5.(2010·全国卷Ⅰ)用去除脑但保留脊髓的蛙(称脊蛙)为材料,进行反射活动实验。请回答与此有关的问题:(1)用针刺激脊蛙左后肢的趾部,可观察到该后肢出现收缩活动。该反射活动的感受器位于左后肢趾部的________中,神经中枢位于________中。(2)反射活动总是从感受器接受刺激开始到效应器产生反应结束,这一方向性是由__________________________所决定的。 (3)剪断支配脊蛙左后肢的传出神经(见右图),立即刺激A端________(能、不能)看到左后肢收缩活动;刺激B端________(能、不能)看到左后肢收缩活动。若刺激剪断处的某一端出现收缩活动,该活动________(能、不能)称为反射活动,主要原因是________________________________________________。 解析:(1)感受器(感觉神经末梢)位于被刺激部位的皮肤中;脊蛙反射的神经中枢在脊髓中。(2)兴奋在神经纤维上传导具有双向性;兴奋在神经元之间的传递具有单向性,即只能由上一个神经元的轴突末梢传向下一个神经元的树突末梢或胞体。原因是神经递质只能通过突触前膜传向突触后膜。(3)神经元的生理特性是:受到刺激,能够产生兴奋,并且传导兴奋;骨骼肌的生理特性是:受到刺激,能够收缩。故剪断支配脊蛙左后肢的传出神经后,立即刺激A端,会引起与其神经相联系的左后肢骨骼肌收缩,但由于该过程没有完整的反射弧,故不能称为反射活动;刺激B端,兴奋不能传向左后肢骨骼肌,不能产生收缩活动。 答案:(1)皮肤 脊髓(2)突触的结构(其他合理答案也可)(3)能 不能 不能 反射弧结构不完整(其他合理答案也可) 注:点击此图片进入“课时跟踪检测” 第八章受体的放射配体结合分析技术受体是细胞膜或细胞内的大分子,它的作用是和细胞外的信息分子呈特异性结合,然后将信息转变为细胞效应,因此受体的功能是识别和信息转导。 受体的进一步解释:受体是细胞膜或细胞内的一些能首先与生物活性分子(药物,毒素,神经递质,激素和抗原)相互作用的分子,它们具有三个相互关联的功能:(1)识别和结合,即通过高亲和力的特异过程,识别并结合与其结构上具有一定互补性的分子-配基(2)转导信号:受体和配基相互作用产生信号,传递到效应器,如酶,离子通道等,使它们的活性或构象发生与导致生理效应相适应的变化. (3)产生相应的生物效应:效应的强度与体外实验所测得的激动剂亲和力的大小相应.当然,如果受体所结合的是秸抗剂,则应表现为生物效应的阻断作用.受体鉴定的标准:饱和性高亲和力立体选择性可逆性靶组织的专一性存在竞争性拮抗剂具有内源性配基受体配基结合诱发生理效应 受体的分类:神经递质受体激素受体摄取血浆蛋白或转运物质的受体细胞黏附受体直接参与免役功能的受体药物受体毒素受体病原体受体 受体的放射配体结合分析是建立在放射性标记配体和受体间的理化结合反应,通过反应给出一定量靶组织或靶细胞中能与配体结合的受体数,用结合位点数表示,另外通过多点测量,经数据处理可给出受体的亲和力(常以平衡离解常数表示),应该指出,受体测定结果应与该受体的结合特性和介导的生物效应作综合分析,作出正确判断。 受体与疾病受体与疾病的关系主要表现在两个方面:一方面:受体的变化导致疾病的产生和加重其发展,另一方面:在疾病过程中产生了受体的变化。以受体改变为起因的疾病,称为受体病多种原因引起的很多疾病中所产生的受体的改变,也成为研究这些疾病的防治的主要方面。可分为以下几种。 疾病时受体的变化(1)受体数目的变化有很多疾病出现受体数目的变化,其中以胰岛素受体的变化最为显著。例如:肥胖症是一种因胰岛素数目减少而发生的疾病,这种病人单核细胞或脂肪细胞中胰岛素受体数目明显减少而亲和力不变。 (2)受体亲和力的变化包括两种完全相反的变化。一种是受体亲和力增加例如:肢端肥大症和胰腺瘤时,胰岛素受体亲和力增加。甲状腺激素使儿茶酚胺受体的亲和力增加等; 另一种是受体亲和力降低,例如哮喘病人外周血液淋巴细胞β受体,在最大结合容量减少的同时,伴有亲和力的降低。某些类型的受体的自身抗体亦可使相应受体的亲和力减弱。 (3)受体特异性的变化受体的特征之一是具有高度特异性,即特定的受体只与相应的药物或激素等配基相互作用。但是,有时这种特异性并不严格。一种受体除了对本身的配基具有很高的亲和力外,还能以低亲和力与另一种或多种激素或药物等结合,即表现为兼并性。 在正常情况下,受体可能完全不与这些配基起反应,但当后者过量时,两者就会相互作用,并产生一定的效应。这种情况称之为受体特异性的外溢。主要发生于某些病理状态。(4)受体的自身抗体多数受体的化学本质是蛋白质,它们都有抗原性。大量实验表明,在受体蛋白质上存在特异的抗原决定簇。 但是,由于免疫自稳作用,正常机体并不产生受体的自身抗体。然而,由于遗传缺陷的内因存在,或在感染等外因作用下,机体不能免疫麻痹自身抗原,破坏了原有的免疫动态平衡,发生了对受体的病理免疫反应,因而表现为自身免疫病。受体的自身抗体有下列作用:①加速受体降解、降低受体浓度,使之不足以介导正常的生物效应; ②阻断受体与激素结合,造成一种抗激素状态;③模仿正常情况下被激活的受体的作用。具有前两种作用之一的自身抗体,统称为封闭性抗体;如β受体和烟碱型乙酰胆碱受体的自身抗体,它们能与相应的抗原(即受体)结合,形成免疫复合物,从而导致受体数目减少,或亲和力下降,或两者均有之,干扰了受体与激动剂结合,最终导致靶细胞的功能低下或完全丧失。 对于能模仿激动剂作用的抗体,则称之为刺激性抗体;困为它们能激活受体,使靶细胞功能异常亢进;胰岛素受体的抗体即属于这一类。受体的自身抗体通常为IgG,遇见属于其他Ig类型的抗体。例如:重症肌无力的病因是由于产生了烟碱型乙酰碱受体的自身抗体。促甲状腺激素受体自身抗体则患弥漫性毒性甲状腺肿; 胃泌素受体自身抗体形成伴有恶性贫血;β受体的激动性自身抗体导致哮喘和过敏性鼻炎等。(5)受体-效应器偶联机理异常受体-效应器偶联机异常亦称之为“受体后缺陷”。常见于胰岛素和甲状旁腺激素受体的变化;后者为例,主要是其受体的信号转导系统的改变:与其相偶联的Gs的数量减少,而Gi则是正常的。这种变化的结果是,与腺苷酸环化酶解偶联,cAMp的生成量减少。 2、受体理伦在疾病研究中的应用(1)探讨疾病的发病机理以高血压发病的β受体失敏为例,在血管平滑肌的细胞膜上存在着多种物质的受体。其中β受体、前列腺素、腺苷和5-羟色胺等的受体被激活可导致血管扩张;这些受体都是通过激活腺苷酸环化酶(AC),增加cAMP的含量,进而产生效应。而α受体是介导血管收缩效应的受体。如果交感神经功能亢进,所释放的递质持续增多,它们持久地作用于β受体,可导致β受体AC系统的活性降低。 从分子水平观察,此时AC的调节亚基与催化亚基解联,使后者难以正常催化由ATP转变为cAMP的反应。由于这一系统对其他介导血管扩张作用的受体(PG,腺苷和5-HT)是通用的,它的功能障碍导致这些扩张血管物质的作用减弱,从而表现为血管扩张反应迟钝。与此同时,过量的递质会与α受体结合,使之过度兴奋,导致血管收缩。这两种效应的最终结合即表现为高血压。β受体阻断剂治疗高血压有效,从实践上证明上述解释是正确的。 (2)从受体变化寻找疾病的病因主要包括免疫学异常和遗传缺陷的疾病。很多自身免疫疾病是由于受体的自身抗体引起的,如乙酰胆碱受体的抗体所致的重症肌无力,促甲状腺受体的抗体所致的弥漫性毒性甲状腺肿等。根据这些自身抗体对受体的作用,可将其分为封闭性和刺激性两大类。 封闭性抗体能通过与受体结合,竞争性地抵制配基与受体相互作用;此时尽管激动剂的水平是正常的,也不能引起应有的生理效应,因为受体已被自身抗体占领;N受体的自身抗体属于这一类。刺激性抗体能模仿受体-激动剂的某些效应,使受体处于异常的活跃状态,表现为某些功能的亢进;促甲状腺素和胰岛素受体属于这一类。 (3)根据受体测定结果选择治疗方案例如:以乳癌的治疗为例,除手术治疗外,还可以采用内分泌疗法和化学治疗。但是,病人适合于什么治疗,取决于癌细胞中是否存在雌激素和孕酮受体(ER和PgR)。以同时存在雌、孕激素两种受体时内分泌疗法效果最好,而当两种受体均为阴性时化学疗法才能有效。实验证明,受体阴性的癌细胞的增殖速率比受体阳性者快得多;因此,它们必然摄取较多的具有细胞毒性的化学治疗物质,故对化学疗法敏感。 在乳癌的非手术治疗中,ER和PgR测定已被列为决定治疗方案前的常规检查。糖皮质细胞中GR浓度很低,则上述药物的治疗效果往往很差。这可能是因为在急性白血病时,缺乏正常量和正常功能的GR。 (4)受体变化作为疾病预后的指标ER阳性的乳癌病人的存活时间和术后的缓解期,都要比受体阴性者长一些。在急性淋巴细胞性白血病患儿髓中GR的检查结果表明,凡是GR水平低下者,即使经过治疗有所缓解,也往往迅速复发。(5)受体研究可直接为疾病寻求防治措施霍乱弧菌所产生的外毒素(CT),是通过细胞膜上单唾液酸神经节苷酯(GM1)作为受体而发挥作用的。体外实验表明GM1能阻断CT与膜上的GM1结合;抵制CT的 生物效应;从溶液中将CT沉淀下来。根据GM1的这些特征,已将它制成适当的制剂,在治疗霍乱中取得了较好的效果。放射配基结合法基本原理:是利用受体和配基结合的专一性以及放射性同位素测量的高灵敏度的特点,用放射性核素标记配基(*H),在一定条件下,使其与受体(R)结合,形成受体一配基复合物(R*H),测量R*H的放射性活度。可用下式表示:R+*H=R*H 放射性标记配基结合实验的目的是观察和确定放射性标记配基和受体间的物理化学相互作用。 式中,*H不仅和受体呈专一性结合,还和非受体组织蛋白(P)呈非专一性结合,形成P*H。虽然,非受体蛋白和*H的亲和力比受体小,但其浓度要比受体蛋白大得多,因此P*H值可以很大,干扰对R*H的测定。如何减少P*H值是放射配基结合法能否成功的关键。解决的办法是: 1、利用*H和R的亲和力高,同P的亲和力低这一特点,尽可能用低浓度的*H。但(*H)浓度低,(R*H)值也低,为了达到仪器可以测量的程度,应当尽可能用高放射比度的标记配基。2、利用*H和R的专一性结合的特点,应当尽可用高纯度的标记配基。3、利用受体蛋白容量少,可饱和性,而非受体蛋白高容量,非饱和性的特点,加浓度为*H100~500倍的非标记(H),以校正非特异结合,可用下式说明 P+R+*H=R*H+P*H(A)P+R+*H+H=RH+P*H+P*H(A)(H>>*H)(A)dpm-(B)dpm相当于(R*H+P*H)-P*H根据上述原理,放射配基结合法必须具备以下条件:(1)标记配基为了保证标记配基的比放射性、放射性纯度、稳定性以及是否适用于专一结合,应注意以下几方面: ①配基选择。组织内受体量很少,在进行分析时必须选择同受体有高亲和力的激动剂或拮抗剂,在较低的配基浓度即能保证得到专一性的最大结合率。专一拮抗剂优于激动剂,一般要求标记配基的浓度最好能小于受体配基络合物的解离常数。 例如:最常用的是3H标记物,其比放射性应大于3.7×1010Bq(10Ci)/mmol。优点:比较稳定,生物学效应不致改变,半衰期较长,也比较容易合成高比放射性标记化合物;缺点:须由专门实验室合成。125I标记物:优点:是可获得高比放射性的配基,如高达到3.7×1010Bq(1000Ci)/mmol以 上,并可在一般同位素实验室内合成;缺点:配基必须含有芳香族羟基,如酪氨酸残基,在配基分子中,参入一个碘原子一般不会影响它的生物活性,但参入二个以上的碘原子时,会降低配基的生物活性。此外,在标碘过程中,也可引起配基分子的改变。碘化的配基与原来的配基不完全相同,且不易纯化。另外,125I标记物的半衰期只有二个月。 ②检测标记配基的放射性纯度。常规结合实验只有大约10%的标记配基与组织受体结合,因此放化纯度应在90%以上。最常用的纯度检查是薄层层析,有时也可用核磁共振检查配基分子结构的细微改变。经过纯化后的样品,在使用前还应该作放射性浓度测定。 ③样品的贮存。样品应放在密封避光瓶中,必要时加入抗氧化剂低温保存。④监测标记配基是否变质。在结合实验中,最好先检查标记配基是否发生改变。其办法是将配基与相应的膜受体制剂温育,在反应终止时,抽提结合在组织受体上的放射性物质,用TLC法分析纯度,其Rf值在保存期间应该保持一致。 (2)受体组织建立受体结合实验时,首先,应该充分考虑选用合适的生物组织,该组织应含有对特定配基有生物学反应的受体。在一定条件下,受体的结合量与受体组织浓度呈线性关系。就多数配基来说,专一结合与受体的浓度呈直线关系。随着受体组织浓度的继续增加,专一结合出现下降趋势,表明温育时,标记配基有被组织分解的可能性,或者是组织内存在着内源性配基。 这种内源性配基对标记配基,起着干扰作用。就很多受体来说,另一个可能性是标记配基的亲和力的下降等于或超过结合部位数目的增加,这时组织量结合效应曲线可能向下曲折。为了得到更精确并可重复的结合数据,正式实验应该选用线性范围内的组织浓度。 其次,还应该确定专一结合是否限于已知含有这些受体的组织或器官。例如,所研究的受体,已知只存在于中枢神经系统,则专一结合就不应该在其他器官,如肺、肾、心、肠等内出现。 受体制剂的制备方法很重要。多数神经递质的受体结合实验,采用洗过的脑组织匀浆。一般先用匀浆器或超声波粉碎器,以50~100倍容积的的非等渗缓冲液或蒸馏水将脑制成匀浆,然后离心,将沉淀物捣碎,再用上述溶液洗涤一次以上,除去可能存在的内源性物质,以避免对专一受体干扰。 (3)温育条件①缓冲液。对神经递质受体结合实验最适宜的缓冲液是经过反复实验后确定的,包括最适宜的浓度与pH。常用的无机缓冲液是Na+-K+磷酸溶液,有机缓冲液是Tris溶液。为了研究离子对受体结合过程的影响,可以采用不含无机离子的缓冲液。如钠离子可以改变阿片受体的反应性,降低受体与激动剂的亲和力,但不改变拮抗剂的作用强度。同样,硫氰酸盐和碘盐,可增加拮抗抑制脑受体结合3H-GABA的强度,但不影响激动剂的活性。 几乎所有受体结合实验的最适pH都在7~8,除总结合外,结合部位的专一性也随pH而变化,所以,最适pH确定后,最好保持不变。②时间与温度。受体配基相互作用与酶-底物间的反应相似,所以受体结合数据的数学处理基本上与酶化学研究相同。可以基本假定,即结合反应为“稳定态”,因此,结合实验必须在平衡条件下进行。早期结合实验往往温育不同时间,然后终止反应,从而观察到一个动态过程。 在有些情况下平衡几乎立刻达到,而有些受体结合实验竟需要60分钟或更长时间才能达到平衡。在受体结合实验中,达到平衡是指专一结合达到最高值所需的时间,这一时间为受华表结合反应的反应速度常数和解离速度常数的函数。在平衡时,这两种速度常数相等。由此可见,任何影响受体对配基亲和力的因素和处理都能影响达到平衡的时间。遇到这种情况,应该在进行动力学分析前,先确定足以达到平衡所需的温育时间。 既然受体与配基的结合速度和解离速度取决于温度,这就不难想象,配基结合的量和达到平衡时所需要的时间将受温度的影响。当最适温度确定后,就不宜随便更改。多数结合实验是在4℃和37℃进行。为了得到精确度、重复性好的数据,应该在同一温度或低于温育时(常常为4℃)的温度终止结合反应。因为,如果结合反应在4℃,终止结合却在室温,则络合物的结合和解离的速度会随着温度不同而有所改变。这种操作条件将得到很不可靠和可变的动力学数据。 (4)结合和游离配基的分离法受体结合反应达到平衡时必须将反应体系中结合和游离的配基分开,也就是终止结合反应。分离技术要要考虑给定温度,配基从受体解离的速度。已知,受体与配基多以非共价键的形式结合,所形成的受体配基复合体解离甚为迅速,这就要求分离应在尽量短的时间内完成。若以已结合配基解离一半的分离时间为1,则解离受体配基复合体的10%,需要时仅为0.15×t1/2,而10%的解离已是最大的容许量了。如何来决定分离时间呢?这决定于平衡解离常数KD值,大多数受体与配基相互作用顺反应的结合速率常数不大于10-6mol/(L·s)。 1)过滤法。这是最常用的分离方法。采用美国Millipore公司生产的1225型过滤器,或者国产的多头细胞收集器,可同时抽滤12个样品。使用这种方法时,要注意选择合适的滤膜,细胞应选择孔径为1μm的滤膜,若为组织或细胞膜制剂,可选用小于0.2μm。一般用What-matGF/F,也可用国产的海光49型玻璃纤维滤纸。不同的受体可用不同的滤纸,如表皮生长因子用醋酸纤维滤膜,植物凝集素用尼龙滤膜等。 过滤过程一般为10~20s。如果受体络合物的解离速度太快,就易丢失结合的配基。一般,淋洗操作应在低温约0~4℃进行,结合试验在4~37℃进行均可。经过充分淋洗,过滤法比离心法可得到更大的专一结合与非专一结合的比值。当络合物解离常数在10-9~10-11mol/(L·s)范围,本法是很有效的。通常用5~10ml不含配基的冷缓冲液淋洗滤约2~3次,最后经70℃烘干,置于闪烁液中计数。 过滤法最突出的缺点是由于滤膜吸附了游离的标记配基而增加了非特异结合。可在缓冲液中加入适量的牛血清白蛋白或明胶以减少吸附。2)离心法。多数结合实验可用离心法终止。经温育后,将样品在5000g离心10min。离心时,样品始终同配基处于平衡状态。这样,结合受体不致丧失配基。离心后,将上清液倾去,用冰冷的缓冲液或水淋洗沉淀物。淋洗操作要快,只需淋洗沉淀物的表面,以免结合配基的丧失。 淋洗要重复一、二次,然后用适当的助溶剂将沉淀物溶解,最后将混合液合并,加入闪烁液,在液闪仪上计数。其缺点是由于膜沉淀物在离心后未经充分淋洗,而可能混入非专一结合的放射性,3H计数往往比过滤法高。同样,也可能有相当数量的放射性附着在离心管壁上,故管壁也要彻底淋洗。此外,由于沉淀物致密,游离的配基也不易彻底洗。 3)平衡透析法。将标记配基受体组织用半透膜隔开,当标记配基自由地透过膜到达平衡时,游离标记配基浓度在膜两侧相等,含受体制剂一边的标记配基总浓度为游离标记配体与结合配基之和。因此,结合配基的浓度为膜两侧标记配基浓度之差,所以只有当这个差值有意义时,平衡透析才可靠。当受体浓度在受体配基络合物的解离常数范围就可得到较好的结合数据。若当受体浓度远远高于络合物的解离常数,其中大部分加入的配基被受体结合,而游离配基浓度很低。 或当受体浓度远远低于络合物的解离常数范围时,在含受体制剂的膜的两侧,只有小部分标记配基处于结合状态,而大部分为解离状态,因此,测得的结合配基的量只取决于膜两侧很小的配基浓度差,所以,这两种实验都是不可靠的。正常情况下,经过平衡后取出一部分受体组织与缓冲液,检测其放射性。 有受体组织一边的放射性与另一侧的差代表专一性结合。由于亲和力较低,在膜一边须加入大量受体制剂才能得到明显的结合。这样,即使用较高受体组织浓度,平衡透析法还有一个致命的缺点,即受体侧与缓冲液一侧放射性配基量差别很小,以致难以精确计算专一受体结合量。此外,还必须注意透析膜本身能否结合放射性配基,以免带入误差。 4)凝胶过滤。这是一种既适用于可沉淀受体,又适用于可溶性受体的方法,尤适用于从已增溶的受体制剂中将结合的与游离的配基分开。在实际操作中,大致有两种方法:A.先将受体制剂与标记配基共同反应,使达到目的平衡,然后将该混合物加入事先用反应液平衡过的凝胶如Sephadex柱上,通过洗脱,将与受体结合的配基同游离者分开,B.凝胶先以含有低浓度试放射性配基的洗脱液平衡,使达到过饱和; 再将受体制剂回到以这种凝胶填装的层析柱顶部,并以含有标记配基的洗脱液洗脱,监测洗脱液中的放射性,可见与受体结合的放射性配基形成了一个高于基线的“峰”,并随之以放射性计数的“谷”;根据峰与谷的放射性计数差,即可计算已结合的标记配基量。该法要求受体与配基的结合是高亲和力,亦即受体和配基的解离速率相对要缓慢。 5)沉淀法和吸附法。加入硫酸铵、盐析剂、酸以及聚乙二醇等物质,以降低受体配基复合体溶解度。该法在受体研究中应用比较广泛。吸附法是通过吸附游离的配基,而将结合的与未结合的标记配基分开。目前常用字的是葡聚糖覆活性炭(dextrancoatedcharcoal,DCC)法。该法是将惰性支持物活性炭,以葡聚糖之类的多聚碳水化合物包被,使之具有分子筛作用,增加了吸附的选择性; 小分子的游离配基可穿过葡聚糖“外壳”,被活性炭吸附,而大分子的受体配基复合体则不被除数吸附。DCC法在胞液受体的测定中得到了广泛的应用。当然,在具体操作中,对于活性炭的处理,葡聚糖的分子量等均有严格要求。5、降低非特异结合的方法放射性受体结合分析中配基既可被特异性受体所结合,亦可被细胞的其他组分及滤膜等生物和非牺牲物质非特异地吸附。 非特异结合至少包括三个部分:①真正与组织中非受全结合部位结合的标记配基。②吸附在分离物质包括滤膜、试管上的标记配基。③淋洗不充分而残存的、或吸附于沉淀中的标记配基。第一种情况较难以改变。由于通常在制备膜蛋白时采用差速离心法,因此,应增加首次离心力,减少杂蛋白的含量,以降低非特异结合。但这种做法并不总是有效。后两种情况则相对地容易解决。 除了通常在反应体系中加入浓度远高于标记配基的非标记的配基外,还可以通过比较不同的洗涤次数、变更所有缓冲液的pH值等,尽量除去游离配基,也可以向缓冲液中加入抗吸附剂,如清蛋白或胶原蛋白等,以降低分离物质的吸附作用。但是,这种抗吸附物质不宜过量,一般不超过0.1%,最好先确定它本身并不结合游离的配基。 饱和结合实验将浓度递增的放射性配基,与浓度固定的细胞组织制剂共同反应。使标记配基浓度递增的方法有两种:一是增加加入的标记配基量,但其反应体积和比放射性不变,从而增高反应体系中的放射值;二是固定反应体系中的标记配基浓度,通过增加非标记配基浓度,稀释标记配基的比放射性,以便在实际上造成标记配基的浓度递增。一般多取前者。 从理论上讲,受体-配基之间结合的动力学,颇类似于酶-底物的相互作用。以(R)为未被占领的受体浓度,(L)为游离配基的浓度,(RL)为受体-配基复合体的浓度,依质量作用定律得:(R)+(L)=(RL)此时,平衡结合常数既可由缔合常数(KA)决定即:KA=K1/K2=(RL)/(R)(L);亦可由解离常数(KD)决定,即:KD=K2/K1=(R)(L)/(RL)。 如果受体部位是一种类型,不存在异种受体,则配基与受体结合后,只有一个简单的解离常数KD,因此可从上式推导出Scatchard公式。从这处公式,便可以求得平衡稳离常数KD和最大结合容量Bmax。B/F=(Bmax-B)/KD式中,B代表受体特异结合,F代表实际加入的放射配基的终浓度。以B/F对B作图,所得曲线之斜率为-1/KD,从截距可求出Bmax。 例如:现以大鼠心肌内皮素受体测定为例,介绍受体测定的具体方法[5]。将鼠心迅速放入预先冰浴好的生理盐水中,剪除结缔组织,心房肌、心室肌称重后放入冰冷的匀浆液[内含20mmol/LNaHCO3,0.2mol/L苯甲磺酰氟(PMSF),pH7.4]中,比例为1:8,剪碎,用高速分散哭匀浆,速度为7000r/min,三次20s,间隔1min以利充分冷却,将匀浆液以1:20比例稀释。将稀释后的匀浆液在低温高速离心机上以1500g离心15min。取上清液在低温超速离心机上以40000g离心20min,弃上清液,用50mol/LTris-HCl液(内含0.2mol/LPMSF,pH7.4)10ml溶解沉淀,再以上速度离心20min,将沉淀用Tris液重悬稀释后,用牛血清白蛋白做标准以考马斯亮兰G-250法测定蛋白量。 3、动力学实验总配基浓度保持不变,以时间为函数,测定专一结合。结合达到平衡的时间决定于速度常数和受体及配基的浓度。其特异性结合的求法同上所述,以时间对In(Beq/Beq-Bt)作图,其中Beq代表结合达到平衡时,Bt为各时间的特异结合,并进行直线回归得结合动力学图(见表2.33)。以时间对In(Bt/Beq)作图,并作直线回归,可得解离动力学图。 4、竞争性抑制实验主要目的为测定IC50和Ki。IC50是指抑制50%结合的抑制剂浓度,Ki是指在标记配基平衡时,非标记配基与受体部位缔合之平衡解离常数。竞争性抑制是用一类高亲和力的拮抗剂(KD为0.001~0.1μmol/L),或激动剂,将标记配基转换下来。本例仍采用双管法,反应在37℃温浴中进行60min,配基浓度选定在44pmol/L,蛋白浓度为每管30μg,每管中加入未标记的ET1,浓度梯度为1pmol/L~1μmol/L。总反应体积为250μl,BQ-123(ET1受体的阻断剂)浓度为 10pmol/L~10μmol/L。硫氮唑酮及巯甲丙脯酸的浓度各选在1nmol/L~0.1mmol/L。计算每一浓度所对应结合百分数(B/B0),以竞争药物浓度的对数值为横坐标,以B/B0为纵坐标,绘制竞争结合曲线。将曲线通过分对数(lnI/100-I)转化成直线求方程,直线在横坐标上的截距为IC50。以图2.41所示结果为例,作图并求出使标记配基与受体结合量下降50%时,所需的非标记配基的浓度,即为IC50。IC50能反映非标记配基与受体的亲和力和专一性。IC50的求法很多,要采用半对数法,亦可用对数-几率单位法和对数logit法。 放射性配基结合法的应用和前景(1)阐明药物和激素递质的作用机制受体研究可对药物、激素、细胞因子、递质的作用深入到生物大分子之间的相互作用,涉及到细胞功能的触发阶段信号传导的机制。这是生物之间协调生命活动最初的信号传导过程。(2)探讨疾病的病因和发病机理研究证实胰岛素受体性能和数量不正常,可能同糖尿病、肥胖病有密切关系,另有些疾病由于受体合成受阻、更新率受限制以及产生了受体蛋白的自身免疫抗体等,阻止了受体各配基的相互结合,因而产生疾病。 (3)新药设计和药物筛选利用放射配基结合分析法筛选药物,简单、快速、结果可靠、所需样品量少。观察到某一药物对某一受体有亲和力将表明该药可能具有药理作用;如对多种受体或亚型都有一定亲和力,则表明药物专一性不高,可能出现副作用。此法缺点是不能反映药代动力学和药物到达受体部位等一系列生理生化过程。亲和力试验也不能完全鉴别激动剂和拮抗剂。因此,受体结合分析应该伴随动物和生物鉴定等工作。 (4)测定组织或血液中药物的浓度放射配基结合法可定量地测定生物样品中内源性物质和药物浓度。先作一已知不同浓度药物抑制放射配基与受体特异性结合的标准曲线,然后测定未知样品(组织或血样提取物)抑制该放射配基与受体特异性结合的百分率,从标准曲线即可查出未知样品中所含药物的量。该法具有特异性强、灵敏度高和快速简便等特点。'