• 735.50 KB
  • 2022-04-29 14:29:34 发布

最新必修一函数的单调性课件PPT课件.ppt

  • 48页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
'进入夏天,少不了一个热字当头,电扇空调陆续登场,每逢此时,总会想起那一把蒲扇。蒲扇,是记忆中的农村,夏季经常用的一件物品。  记忆中的故乡,每逢进入夏天,集市上最常见的便是蒲扇、凉席,不论男女老少,个个手持一把,忽闪忽闪个不停,嘴里叨叨着“怎么这么热”,于是三五成群,聚在大树下,或站着,或随即坐在石头上,手持那把扇子,边唠嗑边乘凉。孩子们却在周围跑跑跳跳,热得满头大汗,不时听到“强子,别跑了,快来我给你扇扇”。孩子们才不听这一套,跑个没完,直到累气喘吁吁,这才一跑一踮地围过了,这时母亲总是,好似生气的样子,边扇边训,“你看热的,跑什么?”此时这把蒲扇,是那么凉快,那么的温馨幸福,有母亲的味道!  蒲扇是中国传统工艺品,在我国已有三千年多年的历史。取材于棕榈树,制作简单,方便携带,且蒲扇的表面光滑,因而,古人常会在上面作画。古有棕扇、葵扇、蒲扇、蕉扇诸名,实即今日的蒲扇,江浙称之为芭蕉扇。六七十年代,人们最常用的就是这种,似圆非圆,轻巧又便宜的蒲扇。  蒲扇流传至今,我的记忆中,它跨越了半个世纪,也走过了我们的半个人生的轨迹,携带着特有的念想,一年年,一天天,流向长长的时间隧道,袅必修一函数的单调性课件 教学目的:(1)了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思。(2)理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间。(3)掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性。 教学重点:函数的单调性的概念;教学难点:利用函数单调性的定义证明具体函数的单调性。 授课类型:新授课课时安排:1课时教   具:多媒体、实物投影仪 数与形,本是相倚依焉能分作两边飞数无形时少直觉形少数时难入微数形结合百般好隔离分家万事休切莫忘,几何代数统一体永远联系莫分离——华罗庚 xyy=xO11··引例2:画出下列函数的图象(1)y=x此函数在区间内y随x的增大而增大,在区间y随x的增大而减小; xyy=xO11··引例2:画出下列函数的图象(1)y=x此函数在区间内y随x的增大而增大,在区间y随x的增大而减小;x1f(x1) xyy=xO11··引例2:画出下列函数的图象(1)y=x此函数在区间内y随x的增大而增大,在区间y随x的增大而减小;x1f(x1) xyy=xO11··引例2:画出下列函数的图象(1)y=x此函数在区间内y随x的增大而增大,在区间y随x的增大而减小;x1f(x1) xyy=xO11··引例2:画出下列函数的图象(1)y=x此函数在区间内y随x的增大而增大,在区间y随x的增大而减小;x1f(x1) xyy=xO11··引例2:画出下列函数的图象(1)y=x此函数在区间内y随x的增大而增大,在区间y随x的增大而减小;x1f(x1)(-∞,+∞) (2)y=x2引例2:画出下列函数的图象 Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1· Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1·此函数在区间内y随x的增大而增大,在区间内y随x的增大而减小。 Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1·此函数在区间内y随x的增大而增大,在区间内y随x的增大而减小。x1f(x1) Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1·此函数在区间内y随x的增大而增大,在区间内y随x的增大而减小。f(x1)x1 Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1·此函数在区间内y随x的增大而增大,在区间内y随x的增大而减小。f(x1)x1 Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1·此函数在区间内y随x的增大而增大,在区间内y随x的增大而减小。f(x1)x1 Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1·此函数在区间内y随x的增大而增大,在区间内y随x的增大而减小。f(x1)x1 Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1·此函数在区间内y随x的增大而增大,在区间内y随x的增大而减小。f(x1)x1 Oxyy=x2(2)y=x2引例2:画出下列函数的图象1·1·此函数在区间内y随x的增大而增大,在区间内y随x的增大而减小。f(x1)x1(-∞,0][0,+∞) 0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征数量 特征 0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升数量 特征 0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升数量 特征y随x的增大而增大 0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升从左至右,图象下降数量 特征y随x的增大而增大 0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升从左至右,图象下降数量 特征y随x的增大而增大y随x的增大而减小 0yx1x2f(x2)f(x1)0yx1x2f(x2)f(x1)xx····在区间I内在区间I内图象y=f(x)y=f(x)图象特征从左至右,图象上升从左至右,图象下降数量 特征y随x的增大而增大当x1<x2时,f(x1)f(x2) 那么就说在f(x)这个区间上是单调减函数,I称为f(x)的单调减区间.Oxyx1x2f(x1)f(x2)由此得出单调增函数和单调减函数的定义.xOyx1x2f(x1)f(x2)设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,那么就说在f(x)这个区间上是单调增函数,I称为f(x)的单调区间.增当x1单调区间 (2)函数单调性是针对某个区间而言的.(1)如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性。在单调区间上,从左到右看,增函数的图象是上升的,减函数的图象是下降的。注意:判断1:函数f(x)=x2在是单调增函数;xyo (2)函数单调性是针对某个区间而言的.(1)如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性。在单调区间上,从左到右看,增函数的图象是上升的,减函数的图象是下降的。注意:判断2:定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)在R上是增函数;(3)x1,x2取值的任意性yxO12f(1)f(2) 例1如图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数. 探究:画出下列函数图像,并写出单调区间:数缺形时少直观xy_____________,? 探究:画出下列函数图像,并写出单调区间:数缺形时少直观xy_____________,讨论1:根据函数单调性的定义 1.任取x1,x2∈D,且x1